Skip to main content
Log in

Mine tailings as a raw material in alkali activation: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The mining industry produces billions of tons of mine tailings annually. However, because of their lack of economic value, most of the tailings are discarded near the mining sites, typically under water. The primary environmental concerns of mine tailings are related to their heavy metal and sulfidic mineral content. Oxidation of sulfidic minerals can produce acid mine drainage that leaches heavy metals into the surrounding water. The management of tailing dams requires expensive construction and careful control, and there is the need for stable, sustainable, and economically viable management technologies. Alkali activation as a solidification/stabilization technology offers an attractive way to deal with mine tailings. Alkali activated materials are hardened, concrete-like structures that can be formed from raw materials that are rich in aluminum and silicon, which fortunately, are the main elements in mining residues. Furthermore, alkali activation can immobilize harmful heavy metals within the structure. This review describes the research on alkali activated mine tailings. The reactivity and chemistry of different minerals are discussed. Since many mine tailings are poorly reactive under alkaline conditions, different pretreatment methods and their effects on the mineralogy are reviewed. Possible applications for these materials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W.A. Asad, M.A. Qureshi, and H. Jang, A review of cut-off grade policy models for open pit mining operations, Resour. Policy, 49(2016), p. 142.

    Google Scholar 

  2. H.E. Jamieson, S.R. Walker, and M.B. Parsons, Mineralogical characterization of mine waste, Appl. Geochem., 57(2015), p. 85.

    CAS  Google Scholar 

  3. J.S. Adiansyah, M. Rosano, S. Vink, and G. Keir, A framework for a sustainable approach to mine tailings management: Disposal strategies, J. Cleaner Prod., 108(2015), p. 1050.

    Google Scholar 

  4. B.G. Lottermoser, Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed., Springer-Verlag Berlin Heidelberg, New York, 2010.

    Google Scholar 

  5. I. Park, C.B. Tabelin, S. Jeon, X.L. Li, K. Seno, M. Ito, and N. Hiroyoshi, A review of recent strategies for acid mine drainage prevention and mine tailings recycling, Chemosphere, 219(2019), p. 588.

    CAS  Google Scholar 

  6. M. Benzaazoua, T. Belem, and B. Bussière, Chemical factors that influence the performance of mine sulphidic paste backfill, Cem. Concr. Res., 32(2002), No. 7, p. 1133.

    CAS  Google Scholar 

  7. B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, and İ. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, J. Hazard. Mater., 168(2009), No. 2–3, p. 848.

    CAS  Google Scholar 

  8. M. Benzaazoua, J. Ouellet, S. Servant, P. Newman, and R. Verburg, Cementitious backfill with high sulfur content physical, chemical, and mineralogical characterization, Cem. Concr. Res., 29(1999), No. 5, p. 719.

    CAS  Google Scholar 

  9. F. Rao and Q. Liu, Geopolymerization and its potential application in mine tailings consolidation: A review, Miner. Process. Extr. Metall. Rev., 36(2015), No. 6, p. 399.

    CAS  Google Scholar 

  10. S. Ahmari and L.Y. Zhang, Durability and leaching behavior of mine tailings-based geopolymer bricks, Constr. Build. Mater., 44(2013), p. 743.

    Google Scholar 

  11. K. Komnitsas and D. Zaharaki, Geopolymerisation: A review and prospects for the minerals industry, Miner. Eng., 20(2007), No. 14, p. 1261.

    CAS  Google Scholar 

  12. S.R. Walker, H.E. Jamieson, A. Lanzirotti, C.F. Andrade, and G.E.M. Hall, The speciation of arsenic in iron oxides in mine wastes from the giant gold mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale, Can. Mineral., 43(2005), No. 4, p. 1205.

    CAS  Google Scholar 

  13. P. Kinnunen, A. Ismailov, S. Solismaa, H. Sreenivasan, M.-L. Räisänen, E. Levänen, and M. Illikainen, Recycling mine tailings in chemically bonded ceramics - A review, J. Cleaner Prod., 174(2018), p. 634.

    CAS  Google Scholar 

  14. P.C. Singer and W. Stumm, Acidic mine drainage: The rate-determining step, Science, 167(1970), No. 3921, p. 1121.

    CAS  Google Scholar 

  15. J.L. Provis and J.S.J. van Deventer, Alkali Activated Materials: State-Of-The-Art Report, RILEM TC 224-AAM, [in] RILEM State-of-the-Art Reports, Vol. 13, Springer Netherlands, New York, 2014.

    Google Scholar 

  16. I. Lancellotti, L. Barbieri, and C. Leonelli, Use of alkali-activated concrete binders for toxic waste immobilization, [in] F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasirt, eds., Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, Cambridge, 2015, p. 539.

    Google Scholar 

  17. J.L. Provis, Immobilisation of toxic wastes in geopolymers, [in] J.L. Provis and J.S.J. van Deventer, eds., Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead Publishing, Cambridge, 2009, p. 421.

    Google Scholar 

  18. J.L. Provis, Activating solution chemistry for geopolymers, [in] J.L. Provis and J.S.J. van Deventer, eds., Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead Publishing, Cambridge, 2009, p. 50.

    Google Scholar 

  19. J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and L. Lorenzen, The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications, Miner. Eng., 10(1997), No. 7, p. 659.

    CAS  Google Scholar 

  20. J. Deja, Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders, Cem. Concr. Res., 32(2002), No. 12, p. 1971.

    CAS  Google Scholar 

  21. H. Sreenivasan, P. Kinnunen, E.-P. Heikkinen, and M. Illikainen, Thermally treated phlogopite as magnesium-rich precursor for alkali activation purpose, Miner. Eng., 113(2017), p. 47.

    CAS  Google Scholar 

  22. L.Y. Zhang, S. Ahmari, and J.H. Zhang, Synthesis and characterization of fly ash modified mine tailings-based geopolymers, Constr. Build. Mater., 25(2011), No. 9, p. 3773.

    Google Scholar 

  23. S.G. Son, Y.D. Kim, W.K. Lee, and K.N. Kim, Properties of the alumino-silicate geopolymer using mine tailing and granulated slag, J. Ceram. Process. Res., 14(2013), No. 5, p. 591.

    Google Scholar 

  24. J. Kiventerä, L. Golek, J. Yliniemi, V. Ferreira, J. Deja, and M. Illikainen, Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization, Int. J. Miner. Process., 149(2016), p. 104.

    Google Scholar 

  25. E.V. Kalinkina, B.I. Gurevich, and A.M. Kalinkin, Alkali-activated binder based on milled antigorite, Minerals, 8(2018), No. 11, p. 503.

    CAS  Google Scholar 

  26. P. Perumal, K. Piekkari, H. Sreenivasan, P. Kinnunen, and M. Illikainen, One-part geopolymers from mining residues - Effect of thermal treatment on three different tailings, Miner. Eng., 144(2019), art. No. 106026.

  27. H. Niu, P. Kinnunen, H. Sreenivasan, E. Adesanya, and M. Illikainen, Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential, Miner. Eng., 151(2020), art. No. 106331.

  28. P.N. Lemougna, J. Yliniemi, A. Ismailov, E. Levanen, P. Tanskanen, P. Kinnunen, J. Roning, and M. Illikainen, Recycling lithium mine tailings in the production of low temperature (700-900°C) ceramics: Effect of ladle slag and sodium compounds on the processing and final properties, Constr. Build. Mater., 221(2019), p. 332.

    CAS  Google Scholar 

  29. J. Davidovits, Waste Solidification and Disposal Method, US Patent, Appl. 4859367, 1989.

  30. J.G.S. van Jaarsveld, G.C. Lukey, J.S.J. van Deventer, and A. Graham, The stabilisation of mine tailings by reactive geopolymerisation, [in] International Congress on Mineral Processing and Extractive Metallurgy, Melbourne, 2000, p. 363.

  31. S. Ahmari and L.Y. Zhang, Production of eco-friendly bricks from copper mine tailings through geopolymerization, Constr. Build. Mater., 29(2012), p. 323.

    Google Scholar 

  32. S. Ahmari and L.Y. Zhang, Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks, Constr. Build. Mater., 40(2013), p. 1002.

    Google Scholar 

  33. L. Manjarrez and L.Y. Zhang, Utilization of copper mine tailings as road base construction material through geopolymerization, J. Mater. Civ. Eng., 30(2018), No. 9, art. No. 04018201.

    Google Scholar 

  34. Q. Wan, F. Rao, S.X. Song, C.A. Leon-Patino, Y.Q. Ma, and W.Z. Yin, Consolidation of mine tailings through geopolymerization at ambient temperature, J. Am. Ceram. Soc., 102(2019), No. 5, p. 2451.

    CAS  Google Scholar 

  35. A. Wang, H.Z. Liu, X.F. Hao, Y. Wang, X.Q. Liu, and Z. Li, Geopolymer synthesis using garnet tailings from molybdenum mines, Minerals., 9(2019), No. 1, p. 48.

    CAS  Google Scholar 

  36. J. Kiventerä, I. Lancellotti, M. Catauro, F.D. Poggetto, C. Leonelli, and M. Illikainen, Alkali activation as new option for gold mine tailings inertization, J. Cleaner Prod., 187(2018), p. 76.

    Google Scholar 

  37. H.Q. Jiang, Z.J. Qi, E. Yilmaz, J. Han, J.P. Qiu, and C.L. Dong, Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills, Constr. Build. Mater., 218(2019), p. 689.

    CAS  Google Scholar 

  38. F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng., 30(2012), p. 33.

    CAS  Google Scholar 

  39. I. Capasso, S. Lirer, A. Flora, C. Ferone, R. Cioffi, D. Caputo, and B. Liguori, Reuse of mining waste as aggregates in fly ashbased geopolymers, J. Cleaner Prod., 220(2019), p. 65.

    CAS  Google Scholar 

  40. M. Falah, R. Obenaus-Emler, P. Kinnunen, and M. Illikainen, Effects of activator properties and curing conditions on alkaliactivation of low-alumina mine tailings, Waste Biomass Valorizatio, 11(2020), No. 9, p. 5027.

    CAS  Google Scholar 

  41. X.K. Jiao, Y.M. Zhang, and T.J. Chen, Thermal stability of a silica-rich vanadium tailing based geopolymer, Constr. Build. Mater., 38(2013), p. 43.

    CAS  Google Scholar 

  42. L. Yu, Z. Zhang, X. Huang, B.Q. Jiao, and D.W. Li, Enhancement experiment on cementitious activity of copper-mine tailings in a geopolymer system, Fibers, 5(2017), No. 4, p. 47.

    Google Scholar 

  43. E. Adesanya, K. Ohenoja, J. Yliniemi, and M. Illikainen, Mechanical transformation of phyllite mineralogy toward its use as alkali-activated binder precursor, Miner. Eng., 145(2020), art. No. 106093.

  44. C. Ferone, B. Liguori, I. Capasso, F. Colangelo, R. Cioffi, E. Cappelletto, and R. Di Maggio, Thermally treated clay sediments as geopolymer source material, Appl. Clay Sci., 107(2015), p. 195.

    CAS  Google Scholar 

  45. D. Bondar, C.J. Lynsdale, N.B. Milestone, N. Hassani, and A.A. Ramezanianpour, Effect of heat treatment on reactivitystrength of alkali-activated natural pozzolans, Constr. Build. Mater., 25(2011), No. 10, p. 4065.

    Google Scholar 

  46. H. Xu and J.S.J. Van Deventer, Geopolymerisation of multiple minerals, Miner. Eng., 15(2002), No. 12, p. 1131.

    CAS  Google Scholar 

  47. F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders, Cem. Concr. Res., 37(2007), No. 6, p. 933.

    CAS  Google Scholar 

  48. F. Pacheco-Torgal, J.P. Castro-Gomes, and S. Jalali, Investigations on mix design of tungsten mine waste geopolymeric binder, Constr. Build. Mater., 22(2008), No. 9, p. 1939.

    Google Scholar 

  49. F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Durability and environmental performance of alkali-activated tungsten mine waste mud mortars, J. Mater. Civ. Eng., 22(2010), No. 9, p. 897.

    Google Scholar 

  50. J. Kiventerä, H. Sreenivasan, C. Cheeseman, P. Kinnunen, and M. Illikainen, Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime, J. Environ. Chem. Eng., 6(2018), No. 5, p. 6530.

    Google Scholar 

  51. S. Aydın and C.Ç. Kızıltepe, Valorization of boron mine tailings in alkali-activated mortars, J. Mater. Civ. Eng., 31(2019), No. 10, p. 04019224.

    Google Scholar 

  52. D.W. Feng, J.L. Provis, and J.S.J. van Deventer, Thermal activation of albite for the synthesis of one-part mix geopolymers, J. Am. Ceram. Soc., 95(2012), No. 2, p. 565.

    CAS  Google Scholar 

  53. S. Moukannaa, M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, and R. Hakkou, Recycling of phosphate mine tailings for the production of geopolymers, J. Cleaner Prod., 185(2018), p. 891.

    CAS  Google Scholar 

  54. M. Naghsh and K. Shams, Synthesis of a kaolin-based geopolymer using a novel fusion method and its application in effective water softening, Appl. Clay Sci., 146(2017), p. 238.

    CAS  Google Scholar 

  55. H. Tchakoute Kouamo, J.A. Mbey, A. Elimbi, B.B. Kenne Diffo, and D. Njopwouo, Synthesis of volcanic ash-based geopolymer mortars by fusion method: Effects of adding metakaolin to fused volcanic ash, Ceram. Int., 39(2013), No. 2, p. 1613.

    CAS  Google Scholar 

  56. L.N. Tchadjié, J.N.Y. Djobo, N. Ranjbar, H.K. Tchakouté, B.B.D. Kenne, A. Elimbi, and D. Njopwouo, Potential of using granite waste as raw material for geopolymer synthesis, Ceram. Int., 42(2016), No. 2, p. 3046.

    Google Scholar 

  57. F. Demir and E.M. Derun, Modelling and optimization of gold mine tailings based geopolymer by using response surface method and its application in Pb2+ removal, J. Cleaner Prod., 237(2019), art. No. 117766.

  58. S. Moukannaa, A. Nazari, A. Bagheri, M. Loutou, J.G. Sanjayan, and R. Hakkou, Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties, J. Non-Cryst. Solids, 511(2019), p. 76.

    CAS  Google Scholar 

  59. J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and A. Schwartzman, The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics, Miner. Eng., 12(1999), No. 1, p. 75.

    CAS  Google Scholar 

  60. Q. Wan, F. Rao, S.X. Song, R. Morales-Estrella, X. Xie, and X. Tong, Chemical forms of lead immobilization in alkali-activated binders based on mine tailings, Cem. Concr. Compos., 92(2018), p. 198.

    CAS  Google Scholar 

  61. I.P. Giannopoulou and D. Panias, Development of geopolymeric materials from industrial solid wastes, [in] 2nd International Conference on Advances in Mineral Resources Management and Environmental Geotechnology, Hania, Greece, 2006, p. 69.

  62. C. Vandecasteele, V. Dutré, D. Geysen, and G. Wauters, Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic, Waste Manage., 22(2002), No. 2, p. 143.

    CAS  Google Scholar 

  63. M. Chrysochoou and D. Dermatas, Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study, J. Hazard. Mater., 136(2006), No. 1, p. 20.

    CAS  Google Scholar 

  64. J. Kiventerä, K. Piekkari, V. Isteri, K. Ohenoja, P. Tanskanen, and M. Illikainen, Solidification/stabilization of gold mine tailings using calcium sulfoaluminate-belite cement, J. Cleaner Prod.}, 239(2019), art. No. 118008.

  65. H. Nguyen, E. Adesanya, K. Ohenoja, L. Kriskova, Y. Pontikes, P. Kinnunen, and M. Illikainen, Byproduct-based ettringite binder - A synergy between ladle slag and gypsum, Constr. Build. Mater., 197(2019), p. 143.

    CAS  Google Scholar 

  66. M. Sarkkinen, K. Kujala, and S. Gehör, Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings, J. Sustainable Min., 18(2019), No. 3, p. 115.

    Google Scholar 

  67. M. Rico, G. Benito, and A. Díez-Herrero, Floods from tailings dam failures, J. Hazard. Mater., 154(2008), No. 1–3, p. 79.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the project “Steps toward the use of mine tailings in geopolymer materials” funded by the Academy of Finland (No. 292526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenni Kiventerä.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiventerä, J., Perumal, P., Yliniemi, J. et al. Mine tailings as a raw material in alkali activation: A review. Int J Miner Metall Mater 27, 1009–1020 (2020). https://doi.org/10.1007/s12613-020-2129-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2129-6

Keywords

Navigation