Skip to main content

Advertisement

Log in

Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni-P/fly ash and Ni-P/SiO2-Al2O3)

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Recycling and reusing materials from waste have become a nexus in the development of sustainable materials, leading to more balanced technologies. In this study, we developed a composite coating by co-depositing recycled ceramic particles, pulverised fly ash (PFA) and medical ceramics (MC), into a nickel-phosphorus matrix using a typical electroless plating process. Scanning electron microscopy (SEM) images indicated well-dispersed particles in the Ni-P matrix. However, compared with the MC particles, the PFA particles were distributed scantily with a lower content in the matrix, which could be due to the less impingement effect during the co-deposition. A modified microstructure with refined grains was obtained for the PFA-incorporated composite coating, as seen in the SEM micrograph. The X-ray diffraction result of the MC-incorporated composite coating showed the formation of NixSiy phases in addition to the typical Ni3P phases for the heat-treated electroless Ni-P coatings. Upon heat treatment, the PFA-reinforced composite coating, due to a modified microstructure, exhibited a higher microhardness up to HK0.05 818, which is comparable to that of the traditional SiC particle-embedded composite coating (HK0.05 825). The findings can potentially open up a new strategy to further advance the green approach for industrial surface engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. I. Apachitei, F.D. Tichelaar, J. Duszczyk, and L. Katgerman, Solid-state reactions in low-phosphorus autocatalytic NiP-SiC coatings, Surf. Coat. Technol., 148(2001), No. 2–3, p. 284.

    Article  CAS  Google Scholar 

  2. P. Makkar, R.C. Agarwala, and V. Agarwala Chemical synthesis of TiO2 nanoparticles and their inclusion in Ni-P electroless coatings, Ceram. Int., 39(2013), No. 8, p. 9003.

    Article  CAS  Google Scholar 

  3. N.K. Shrestha, D.B. Hamal, and T. Saji, Composite plating of Ni-P-Al2O3 in two steps and its anti-wear performance, Surf. Coat. Technol., 183(2004), No. 2–3, p. 247.

    Article  CAS  Google Scholar 

  4. D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, and P.Y. Zhang, Preparation and properties of electroless Ni-P-SiO2 composite coatings, Appl. Surf. Sci., 255(2009), No. 15, p. 7051.

    Article  CAS  Google Scholar 

  5. S.R. Ardakani, A. Afshar, S. Sadreddini, and A.A. Ghanbari, Characterization of Ni-P-SiO2-Al2O3 nano-composite coatings on aluminum substrate, Mater. Chem. Phys., 189(2017), p. 207.

    Article  Google Scholar 

  6. Y. de Hazan, D. Zimmermann, M. Z’graggen, S. Roos, C. Aneziris, H. Bollier, P. Fehr, and T. Graule, Homogeneous electroless Ni-P/SiO2 nanocomposite coatings with improved wear resistance and modified wear behaviour, Surf. Coat. Technol., 204(2010), No. 21–22, p. 3464.

    Article  CAS  Google Scholar 

  7. S. Karthikeyan and B. Ramamoorthy, Effect of reducing agent and nano Al2O3 particles on the properties of electroless Ni-P coating, Appl. Surf. Sci., 307(2014), p. 654.

    Article  CAS  Google Scholar 

  8. J.N. Balaraju, T.S.N. Sankara Narayanan, and S.K. Seshadri, Electroless Ni-P composite coatings, J. Appl. Electrochem., 33(2003), No. 9, p. 807.

    Article  CAS  Google Scholar 

  9. J. Sudagar, J.S. Lian, and W. Sha, Electroless nickel, alloy, composite and nano coatings - A critical review, J. Alloys Compd., 571(2013), p. 183.

    Article  CAS  Google Scholar 

  10. R.C. Agarwala and V. Agarwala, Electroless alloy/composite coatings: A review, Sadhana, 28(2003), p. 475.

    Article  CAS  Google Scholar 

  11. J.N. Balaraju, Kalavati, and K.S. Rajam, Influence of particle size on the microstructure, hardness and corrosion resistance of electroless N-P-Al2O3 composite coatings, Surf. Coat. Technol., 200(2006), No. 12–13, p. 3933.

    Article  CAS  Google Scholar 

  12. S. Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Effect of alumina content on surface morphology and hardness of Ni-P-Al2O3(α) electroless composite coatings, Surf. Coat. Technol., 184(2004), No. 2–3, p. 170.

    Article  CAS  Google Scholar 

  13. S. Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Wear behavior of Ni-P and Ni-P-Al2O3 electroless coatings, Wear, 262(2007), No. 7–8, p. 978.

    Article  CAS  Google Scholar 

  14. M. Novák, D. Vojtěch, and T. Vítů, Influence of heat treatment on tribological properties of electroless Ni-P and Ni-P-Al2O3 coatings on Al-Si casting alloy, Appl. Surf. Sci., 256(2010), No. 9, p. 2956.

    Article  Google Scholar 

  15. A. Mondon, M.N. Jawaid, J. Bartsch, M. Glatthaar, and S.W. Glunz, Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel-copper contacts on silicon solar cells, Sol. Energy Mater. Sol. Cells, 117(2013), p. 209.

    Article  CAS  Google Scholar 

  16. C.M. Liu, W.L. Liu, S.H. Hsieh, T.K. Tsai, and W.J. Chen, Interfacial reactions of electroless nickel thin films on silicon, Appl. Surf. Sci., 243(2005), No. 1–4, p. 259.

    Article  CAS  Google Scholar 

  17. A. Duhin, Y. Sverdlov, I. Torchinsky, Y. Feldman, and Y. Shacham-Diamand, NiSi contact metallization using electroless Ni deposition on Pd-activated self-assembled monolayer (SAM) on p-type Si(1 0 0), Microelectron. Eng., 84(2007), No. 11, p. 2506.

    Article  CAS  Google Scholar 

  18. I. Apachitei, J. Duszczyk, L. Katgerman, and P.J.B. Overkamp, Electroless Ni-P composite coatings: The effect of heat treatment on the microhardness of substrate and coating, Scripta Mater., 38(1998), No. 9, p. 1347.

    Article  CAS  Google Scholar 

  19. C.N. Panagopoulos and E.P. Georgiou, Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy, Appl. Surf. Sci., 255(2009), No. 13–14, p. 6499.

    Article  CAS  Google Scholar 

  20. M.S. Jagatheeshwaran, A. Elayaperumal, and S. Arulvel, Impact of nano zinc oxide on the friction-wear property of electroless nickel-phosphorus sea shell composite coatings, Mater. Sci. Eng. B, 225(2017), p. 160.

    Article  CAS  Google Scholar 

  21. M. Franco, W. Sha, S. Malinov, and R. Rajendran, Phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on cast aluminium LM24 alloy substrate, Surf. Coat. Technol., 235(2013), p. 755.

    Article  CAS  Google Scholar 

  22. M. Franco, W. Sha, S. Malinov, and H. Liu, Micro-scale wear characteristics of electroless Ni-P/SiC composite coating under two different sliding conditions, Wear, 317(2014), No. 1–2, p. 254.

    Article  CAS  Google Scholar 

  23. M. Franco, W. Sha, V. Tan, and S. Malinov, Insight of the interface of electroless Ni-P/SiC composite coating on aluminium alloy, LM24, Mater. Des., 85(2015), p. 248.

    Article  CAS  Google Scholar 

  24. I. Apachitei, J. Duszczyk, L. Katgerman, and P.J.B. Overkamp, Particles co-deposition by electroless nickel, Scripta Mater., 38(1998), No. 9, p. 1383.

    Article  CAS  Google Scholar 

  25. Z.X. Ping, Y.D. He, C.D. Gu, and T.Y. Zhang, Mechanically assisted electroplating of Ni-P coatings on carbon steel, Surf. Coat. Technol., 202(2008), No. 24, p. 6023.

    Article  CAS  Google Scholar 

  26. Z.X. Ping, G.A. Cheng, and Y.D. He, Mechanically assisted electroless barrel-plating Ni-P coatings deposited on carbon steel, J. Mater. Sci. Technol., 26(2010), No. 10, p. 945.

    Article  CAS  Google Scholar 

  27. X.W. Zhou, Y.F. Shen, H.M. Jin, and Y.Y. Zheng, Microstructure and depositional mechanism of Ni-P coatings with nanoceria particles by pulse electrodeposition, Trans. Nonferrous Met. Soc. China, 22(2012), No. 8, p. 1981.

    Article  CAS  Google Scholar 

  28. J.N. Balaraju and K.S. Rajam, Electroless deposition of N-Cu-P, Ni-W-P and Ni-W-Cu-P alloys, Surf. Coat. Technol., 195(2005), No. 2–3, p. 154.

    Article  CAS  Google Scholar 

  29. I. Apachitei, F.D. Tichelaar, J. Duszczyk, and L. Katgerman, The effect of heat treatment on the structure and abrasive wear resistance of autocatalytic NiP and NiP-SiC coatings, Surf. Coat. Technol., 149(2002), No. 2–3, p. 263.

    Article  CAS  Google Scholar 

  30. T. Hentschel, D. Isheim, R. Kirchheim, F. Müller, and H. Kreye, Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy, Acta Mater., 48(2000), No. 4, p. 933.

    Article  CAS  Google Scholar 

  31. A. Farzaneh, M. Mohammadi, M. Ehteshamzadeh, and F. Mohammadi, Electrochemical and structural properties of electroless Ni-P-SiC nanocomposite coatings, Appl. Surf. Sci., 276(2013), p. 697.

    Article  CAS  Google Scholar 

  32. J.Q. Gao, L. Liu, Y.T. Wu, B. Shen, and W.B. Hu, Electroless Ni-P-SiC composite coatings with superfine particles, Surf. Coat. Technol., 200(2006), No. 20–21, p. 5836.

    CAS  Google Scholar 

  33. C.K. Chen, H.M. Feng, H.C. Lin, and M.H. Hon, The effect of heat treatment on the microstructure of electroless Ni-P coatings containing SiC particles, Thin Solid Films, 416(2002), No. 1–2, p. 31.

    Article  CAS  Google Scholar 

  34. M. Franco, W. Sha, G. Aldic, S. Malinov, and H. Çimenoğlu, Effect of reinforcement and heat treatment on elevated temperature sliding of electroless Ni-P/SiC composite coatings, Tribol. Int., 97(2016), p. 265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The continuous guidance by Prof. Wei Sha, the financial support from Queen’s University Belfast, UK, in the form of a studentship, PFA powder provided by Ali Rafeet, and technical help from Jim Knox and his team from Queen’s University Belfast, UK, are deeply appreciated. The suggestion from I. Neelakanta Reddy (Yeungnam University, Republic of Korea) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Mayanglambam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayanglambam, F., Russell, M. Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni-P/fly ash and Ni-P/SiO2-Al2O3). Int J Miner Metall Mater 27, 1147–1156 (2020). https://doi.org/10.1007/s12613-020-2071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2071-7

Keywords

Navigation