Skip to main content
Log in

High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Rutile titania (TiO2) was successfully prepared via hydrolysis of TiCl4 in the presence of AlCl3. The powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. In the present system, AlCl3 functions as a nucleating agent and induces the formation of rutile TiO2. The influences of HCl and isopropanol concentrations on the purity and morphology of the rutile TiO2 were investigated. The purity of the rutile TiO2 increased with increasing concentration of HCl. Evenly dispersed rutile TiO2 particles with a spherical morphology were obtained when the HCl and isopropanol concentrations were 0.5 and 1 mol·L−1, respectively. Furthermore, the prepared TiO2 powders were used in adsorption tests of the heavy metal pollutant Cr(VI). Rutile TiO2 sample S-9 demonstrated greater adsorption performance and a removal efficiency that was greater than 99.95% after 60 min of adsorption when the Cr(VI) concentration was 200 mg·L−1 The maximum adsorption capacity on rutile TiO2 was 28.9 mg·g−1. This work provides an easy path to prepare a high-performance rutile TiO2 adsorbent with potential applications in water pollution treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. Leary and A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 49(2011), No. 3, p. 741.

    CAS  Google Scholar 

  2. J. Matos, J.M. Chovelon, T. Cordero, and C. Ferronato, Influence of surface properties of activated carbon on photocatalytic activity of TiO2 in 4-chlorophenol degradation, Open Environ. Eng. J., 2(2009), No. 1, p. 21.

    CAS  Google Scholar 

  3. D.L. Jiang, S.Q. Zhang, and H.J. Zhao, Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases, Environ. Sci. Technol., 41(2007), No. 1, p. 303.

    CAS  Google Scholar 

  4. B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353(1991), No. 6346, p. 737.

    Google Scholar 

  5. I.K. Konstantinou and T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B, 49(2004), No. 1, p. 1.

    CAS  Google Scholar 

  6. Y.S. Hu, L. Kienle, Y.G. Guo, and J. Maier, High lithium electroactivity of nanometer-sized rutile TiO2, Adv. Mater., 18(2006), No. 11, p. 1421.

    Google Scholar 

  7. J.S. Chen and X.W. Lou, The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles, J. Power Sources, 195(2010), No. 9, p. 2905.

    CAS  Google Scholar 

  8. K.M. Kutláková, J. Tokarský, P. Kovář, S. Vojtěšková, A. Kovářová, B. Smetana, J. Kukutschová, P. Čapková, and V. Matějka, Preparation and characterization of photoactive composite kaolinite/TiO2, J. Hazard. Mater., 188(2011), No. 1–3, p. 212.

    Google Scholar 

  9. D.A. Hanaor and C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46(2011), No. 4, p. 855.

    CAS  Google Scholar 

  10. M. He, L. Yu, X.H. Lu, and X. Feng, Large-scale hydrothermal synthesis of twinned rutile titania, J. Am. Ceram. Soc., 90(2007), No. 1, p. 319.

    CAS  Google Scholar 

  11. D. Gumy, C. Morais, P. Bowen, C. Pulgarin, S. Giraldo, R. Hajdu, and J. Kiwi, Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point, Appl. Catal. B, 63(2006), No. 1–2, p. 76.

    CAS  Google Scholar 

  12. H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7(1995), No. 4, p. 663.

    CAS  Google Scholar 

  13. R. Kullaiah, L.J. Elias, and A.C. Hegde, Effect of TiO2 nanoparticles on hyddrogen evolution reaction activity of Ni coatings, Int. J. Miner. Metall. Mater., 25(2018), No. 4, p. 472.

    CAS  Google Scholar 

  14. L.Y. Shi, C.Z. Li, and D.Y. Fang, Research progress in preparation of cajuelite titania powders by chlorination process, Chem. Prod. Technol., 4(1997), p. 1.

    Google Scholar 

  15. S.F. Yang, Y.H. Liu, Y.P. Guo, J.Z. Zhao, H.F. Xu, and Z.C. Wang, Preparation of rutile titania nanocrystals by liquid method at room temperature, Mater. Chem. Phys., 77(2003), No. 2, p. 501.

    CAS  Google Scholar 

  16. R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetices for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73.

    CAS  Google Scholar 

  17. J. Huang, R.X. Li, L. Tian, X.H. Yu, Y.Q. Hou, and W. Li, Research progress of oxidation mechanism in the chloride process for titanium dioxide production, Chem. Ind. Eng. Prog., 37(2018), No. 3, p. 1054.

    Google Scholar 

  18. Y.R. Liu, J.L. Zhang, Z.J. Liu, and X.D. Xing, Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 760.

    CAS  Google Scholar 

  19. W.J. Zheng, X.D. Liu, Z.Y. Yan, and L.J. Zhu, Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4, ACS Nano, 3(2009), No. 1, p. 115.

    CAS  Google Scholar 

  20. Q.H. Zhang, L. Gao, and J.K. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Appl. Catal. B, 26(2000), No. 3, p. 207.

    CAS  Google Scholar 

  21. Q.H. Zhang, L. Gao, and J.K. Guo, Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution, Nanostruct. Mater., 11(1999), No. 8, p. 1293.

    CAS  Google Scholar 

  22. C.S. Fang and Y.W. Chen, Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution, Mater. Chem. Phys., 78(2003), No. 3, p. 739.

    CAS  Google Scholar 

  23. V. Moghimifar, A. Raisi, A. Aroujalian, and N.B. Bandpey, Preparation of nano crystalline titanium dioxide by microwave hydrothermal method, Adv. Mater. Res., 829(2014), p. 846.

    Google Scholar 

  24. L.M. Zhou, X.Z. Liang, and J.Q. Cai, Preparation of the shapecontrolled rutile nano-TiO2 by low temperature hydrothermal method, Chin. J. Mater. Res., 24(2010), No. 2, p. 208.

    CAS  Google Scholar 

  25. H.H. Qian, Y. Hu, Y. Liu, M.J. Zhou, and C.F. Guo, Electrostatic self-assembly of TiO2 nanoparticles onto carbon spheres with enhanced adsorption capability for Cr(VI), Mater. Lett., 68(2012), p. 174.

    CAS  Google Scholar 

  26. H. Tel, Y. Altaş, and M.S. Taner, Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide, J. Hazard. Mater., 112(2004), No. 3, p. 225.

    CAS  Google Scholar 

  27. Z.P. Chen, Y. Li, M. Guo, F.Y. Xu, P. Wang, Y. Du, and P. Na, One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III), J. Hazard. Mater., 310(2016), p. 188.

    CAS  Google Scholar 

  28. L. Zhang and Y.G. Zhang, Adsorption characteristics of hexavalent chromium on HCB/TiO2, Appl. Surf. Sci., 316(2014), p. 649.

    CAS  Google Scholar 

  29. S.S. Liu, Y.Z. Chen, L.D. Zhang, G.M. Hua, W. Xu, N. Li, and Y. Zhang, Enhanced removal of trace Cr (VI) ions from aqueous solution by titanium oxide-Ag composite adsorbents, J. Hazard. Mater., 190(2011), No. 1–3, p. 723.

    CAS  Google Scholar 

  30. S.Y. Liu, L.J. Wang, and K.C. Chou, A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis, Ind. Eng. Chem. Res., 55(2016), No. 50, p. 12962.

    CAS  Google Scholar 

  31. R. Li, Controlled Formation and Charaterization of Titania Microspheres [Dissertation], Uiversity of Jinan, Jinan, 2011.

    Google Scholar 

  32. Y.Y. Shi, Y.Y. Zhou, L.F. Gong, and Y.Z. Chen, Research on technological conditions of removing aluminum chloride by crude titanium tetrachloride hydrolysis and settling, Titanium Ind. Prog., 30(2013), No. 4, p. 36.

    Google Scholar 

  33. Z.L. Huang, Analysis of pre-hydrolysis and still bottom hydrolysis during purifying TiCl4, Titanium Ind. Prog., 28(2011), No. 5, p. 38.

    CAS  Google Scholar 

  34. S.B. Baronov, S.S. Berdonosov, Y.V. Baronova, and I.V. Melikhov, Radiochemical diagnostics of thermal hydrolysis of aluminum trichloride, Radiochemistry, 46(2004), No. 5, p. 490.

    CAS  Google Scholar 

  35. M.B. Hay and S.C.B. Myneni, Geometric and electronic structure of the aqueous Al(H2O)3+6 complex, J. Phys. Chem. A, 112(2008), No. 42, p. 10595.

    CAS  Google Scholar 

  36. Z.R. Wei, M.X. Wu, L.M. Zhang, X.H. Liu, Y. Zhou, and G.Y. Dong, Effects of Fe3+ on morphology of rutile TiO2 crystal synthesized by hydrothermal process, J. Synth. Cryst., 39(2010), No. Supplement, p. 269.

    Google Scholar 

  37. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57(1985), No. 4, p. 603.

    CAS  Google Scholar 

  38. S. Asuha, X.G. Zhou, and S. Zhao, Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method, J. Hazard. Mater., 181(2010), No. 1–3, p. 204.

    CAS  Google Scholar 

  39. D.Y. Zhang, Synthesis of High Surface area TiO2 Nanoparticles and Their Adsorptive Properties [Dissertation], Inner Mongolia Normal University, Hohhot, 2014.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51734002 and 51774027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., He, Xb., Wang, Lj. et al. High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition. Int J Miner Metall Mater 27, 1157–1163 (2020). https://doi.org/10.1007/s12613-020-1965-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1965-8

Keywords

Navigation