Skip to main content
Log in

DFT Calculations of the Adsorption States of O2 on OH/H2O-Covered Pt(111)

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The adsorption of O2 on Pt(111) was studied with density functional theory calculations. Various adsorbed states of O2 were evaluated on clean and OH/H2O-covered Pt(111) surfaces at the solid/gas and solid/liquid interfaces. The results reveal that the adsorption of O2 on OH/H2O-covered Pt(111) surface starts with the physical adsorption of O2. Two other adsorption states are reachable from the physisorbed state, the end-on, and bridging chemisorbed O2. The analysis of the energetics of these adsorption states shows that O2 physically adsorbed at the OH/H2O-covered Pt(111) surface is a high-energy state that requires activation to transition to the end-on chemisorbed O2 state. On the other hand, the end-on chemisorbed state can transition to the bridging chemisorbed state with only a small activation energy when a nearby Pt adsorption site is available. Frequency analysis of the physisorbed, end-on, and bridging adsorption states shows that adsorbed O2 stretching frequencies are close to 1400, 1300, and 900 cm−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.M. Gómez-Marín, J.M. Feliu, Oxygen reduction at platinum electrodes: the interplay between surface and surroundings properties. Curr. Opin. Electrochem. 9, 166–172 (2018)

    Google Scholar 

  2. K. Cao, R. van Lent, A.W. Kleyn, M. Kurahashi, L.B.F. Juurlink, Steps on Pt stereodynamically filter sticking of O 2. Proc. Natl. Acad. Sci. 116(28), 13862–13866 (2019)

    CAS  Google Scholar 

  3. M.C.S. Escano, H. Nakanishi, H. Kasai, Spin-polarized density functional theory study of reactivity of diatomic molecule on bimetallic system: the case of O 2 dissociative adsorption on Pt monolayer on Fe(001) . J. Phys. Chem. A 113(52), 14302–14307 (2009)

    CAS  Google Scholar 

  4. A. Eichler, F. Mittendorfer, J. Hafner, Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals. Phys. Rev. B 62(7), 4744–4755 (2000)

    CAS  Google Scholar 

  5. J. Grimblot, A.C. Luntz, D.E. Fowler, Low temperature adsorption of O2 on Pt(111). J. Electron Spectrosc. Relat. Phenom. 52, 161–174 (1990)

    CAS  Google Scholar 

  6. J.L. Gland, B.A. Sexton, G.B. Fisher, Oxygen interactions with the Pt(111) surface. Surf. Sci. 95(2-3), 587–602 (1980)

    CAS  Google Scholar 

  7. M. Shao, P. Liu, R.R. Adzic, Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J. Am. Chem. Soc. 128(23), 7408–7409 (2006)

    CAS  Google Scholar 

  8. R.R. Adžić, J.X. Wang, Configuration and site of O 2 adsorption on the Pt(111) electrode surface. J. Phys. Chem. B 102(45), 8988–8993 (1998)

    Google Scholar 

  9. K. Kunimatsu, T. Yoda, D.A. Tryk, H. Uchida, M. Watanabe, In situATR-FTIR study of oxygenreduction at the Pt/Nafion interface. Phys. Chem. Chem. Phys. 12(3), 621–629 (2010)

    CAS  Google Scholar 

  10. C.A. Melendres, C.B. Rios, X. Feng, R. McMasters, In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes. J. Phys. Chem. 87(18), 3526–3531 (1983)

    CAS  Google Scholar 

  11. Y. Nie, L. Zhang, Y.-Y. Li, C. Hu, Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2. J. Hazard. Mater. 294, 195–200 (2015)

    CAS  Google Scholar 

  12. M.M. Montemore, M.A. van Spronsen, R.J. Madix, C.M. Friend, O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 118(5), 2816–2862 (2018)

    CAS  Google Scholar 

  13. L. Ou, F. Yang, Y. Liu, S. Chen, First-principle study of the adsorption and dissociation of O 2 on Pt(111) in acidic media. J. Phys. Chem. C 113(48), 20657–20665 (2009)

    CAS  Google Scholar 

  14. J. Chen, L. Fang, S. Luo, Y. Liu, S. Chen, Electrocatalytic O2 reduction on Pt: Multiple roles of oxygenated adsorbates, nature of active sites, and origin of overpotential. J. Phys. Chem. C 121(11), 6209–6217 (2017)

    CAS  Google Scholar 

  15. Y. Wang, P.B. Balbuena, Ab initio molecular dynamics simulations of the oxygen reduction reaction on a Pt(111) surface in the presence of hydrated hydronium (H 3 O) + (H 2 O) 2 : Direct or series pathway? J. Phys. Chem. B 109, 14896–14907 (2005)

    CAS  Google Scholar 

  16. T. Li, P.B. Balbuena, Oxygen reduction on a platinum cluster. Chem. Phys. Lett. 367(3-4), 439–447 (2003)

    CAS  Google Scholar 

  17. A.B. Anderson, Y. Cai, R.A. Sidik, D.B. Kang, Advancements in the local reaction center electron transfer theory and the transition state structure in the first step of oxygen reduction over platinum. J. Electroanal. Chem. 580(1), 17–22 (2005)

    CAS  Google Scholar 

  18. M.P. Hyman, J.W. Medlin, Mechanistic study of the electrochemical oxygen reduction reaction on Pt(111) using density functional theory. J. Phys. Chem. B 110(31), 15338–15344 (2006)

    CAS  Google Scholar 

  19. T. Zhang, A.B. Anderson, Oxygen reduction on platinum electrodes in base: Theoretical study. Electrochim. Acta 53(2), 982–989 (2007)

    CAS  Google Scholar 

  20. S.A. Wasileski, M.J. Janik, A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects. Phys. Chem. Chem. Phys. 10(25), 3613–3627 (2008)

    CAS  Google Scholar 

  21. M.J. Janik, C.D. Taylor, M. Neurock, First-principles analysis of the initial electroreduction steps of oxygen over Pt(111). J. Electrochem. Soc. 156(1), B126–B135 (2009)

    CAS  Google Scholar 

  22. K.-Y. Yeh, S.A. Wasileski, M.J. Janik, Electronic structure models of oxygen adsorption at the solvated, electrified Pt(111) interface. Phys. Chem. Chem. Phys. 11(43), 10108–10117 (2009)

    CAS  Google Scholar 

  23. Y. Okamoto, O. Sugino, Hyper-volcano surface for oxygen reduction reactions over noble metals. J. Phys. Chem. C 114(10), 4473–4478 (2010)

    CAS  Google Scholar 

  24. E. Yeager, Recent advances in the science of electrocatalysis. J. Electrochem. Soc. 128(4), 160C (1981)

    Google Scholar 

  25. Y. Wang, P.B. Balbuena, Roles of proton and electric field in the electroreduction of O2 on Pt(111) surfaces: Results of an ab-initio molecular dynamics study. J. Phys. Chem. B 108(14), 4376–4384 (2004)

    CAS  Google Scholar 

  26. A. Panchenko, M.T.M. Koper, T.E. Shubina, S.J. Mitchell, E. Roduner, Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces. J. Electrochem. Soc. 151(12), A2016–A2027 (2004)

    CAS  Google Scholar 

  27. A. Eichler, J. Hafner, Molecular precursors in the dissociative adsorption of O 2 on Pt(111). Phys. Rev. Lett. 79(22), 4481–4484 (1997)

    CAS  Google Scholar 

  28. B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000)

    CAS  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    CAS  Google Scholar 

  30. J. Avelar, A. Bruix, J. Garza, R. Vargas, Van der Waals exchange-correlation functionals over bulk and surface properties of transition metals. J. Phys. Condens. Matter Inst. Phys. J. 31, 315501 (2019)

    CAS  Google Scholar 

  31. D. Yuan, H. Liao, W. Hu, Assessment of van der Waals inclusive density functional theory methods for adsorption and selective dehydrogenation of formic acid on Pt(111) surface. Phys. Chem. Chem. Phys. 21(37), 21049–21056 (2019)

    CAS  Google Scholar 

  32. J.A. Santana, Y. Ishikawa, DFT calculations of the electrochemical adsorption of sulfuric acid anions on the Pt(110) and Pt(100) surfaces. Electrocatalysis (2020). https://doi.org/10.1007/s12678-019-00574-x

  33. J.A. Santana, J.J. Saavedra-Arias, Y. Ishikawa, Electrochemical hydrogen oxidation on Pt(100): a combined direct molecular dynamics/density functional theory study. Electrocatalysis 6(6), 534–543 (2015)

    CAS  Google Scholar 

  34. J.A. Santana, C.R. Cabrera, Y. Ishikawa, A density-functional theory study of electrochemical adsorption of sulfuric acid anions on Pt(111). Phys. Chem. Chem. Phys. 12(32), 9526–9534 (2010)

    CAS  Google Scholar 

  35. J.A. Santana, Y. Ishikawa, Interactions between interfacial water and CO adsorbed on Pt and Pt–Ru alloy surfaces under electrochemical conditions: Density-functional theory study. Electrochim. Acta 56(2), 945–952 (2010)

    CAS  Google Scholar 

  36. J.A. Santana, J.J. Mateo, Y. Ishikawa, Electrochemical hydrogen oxidation on Pt (110): a combined direct molecular dynamics/density functional theory study. J. Phys. Chem. C 114(11), 4995–5002 (2010)

    CAS  Google Scholar 

  37. J.A. Santana, Y. Ishikawa, Density-functional theory study of interactions between water and carbon monoxide adsorbed on platinum under electrochemical conditions. Chem. Phys. Lett. 478(4-6), 110–114 (2009)

    CAS  Google Scholar 

  38. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)

    CAS  Google Scholar 

  39. K. Gustafsson, S. Andersson, Infrared spectroscopy of oxygen adsorbed on hydrogen covered Pt(111). J. Chem. Phys. 121(17), 8532–8536 (2004)

    CAS  Google Scholar 

  40. A.C. Luntz, J. Grimblot, D.E. Fowler, Sequential precursors in dissociative chemisorption: ${\mathrm{O}}_{2}$ on Pt(111). Phys. Rev. B 39(17), 12903–12906 (1989)

    CAS  Google Scholar 

  41. K. Gustafsson, S. Andersson, Leakage of O 2 precursor molecules from inert hydrogen islands on a Pt(111) surface. Phys. Rev. Lett. 97(7), 076101 (2006)

    CAS  Google Scholar 

  42. K. Gustafsson, S. Andersson, Dipole active vibrations and dipole moments of N2 and O2 physisorbed on a metal surface. J. Chem. Phys. 125(4), 044717 (2006)

    CAS  Google Scholar 

  43. J.-C. Dong, X.-G. Zhang, V. Briega-Martos, X. Jin, J. Yang, S. Chen, Z.-L. Yang, D.-Y. Wu, J.M. Feliu, C.T. Williams, Z.-Q. Tian, J.-F. Li, In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019)

    CAS  Google Scholar 

  44. A. Gutiérrez-González, R.D. Beck, Unraveling the complexity of oxygen reactions on Pt surfaces. Proc. Natl. Acad. Sci. 116(28), 13727–13728 (2019)

    Google Scholar 

  45. A.M. Gómez-Marín, E.A. Ticianelli, A reviewed vision of the oxygen reduction reaction mechanism on Pt-based catalysts. Curr. Opin. Electrochem. 9, 129–136 (2018)

    Google Scholar 

  46. H.S. Casalongue, S. Kaya, V. Viswanathan, D.J. Miller, D. Friebel, H.A. Hansen, J.K. Nørskov, A. Nilsson, H. Ogasawara, Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat. Commun. 4, 1–6 (2013)

    Google Scholar 

  47. M. Kinne, T. Fuhrmann, J.F. Zhu, B. Tränkenschuh, R. Denecke, H.-P. Steinrück, Coadsorption of D2O and CO on Pt(111) studied by in situ high-resolution X-ray photoelectron spectroscopy. Langmuir 20(5), 1819–1826 (2004)

    CAS  Google Scholar 

  48. A.P. Seitsonen, Y. Zhu, K. Bedürftig, H. Over, Bonding mechanism and atomic geometry of an ordered hydroxyl overlayer on Pt(111). J. Am. Chem. Soc. 123(30), 7347–7351 (2001)

    CAS  Google Scholar 

  49. M. Wakisaka, H. Suzuki, S. Mitsui, H. Uchida, M. Watanabe, Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline Pt electrodes by photoelectron spectroscopy. Langmuir 25(4), 1897–1900 (2009)

    CAS  Google Scholar 

  50. K.P. Huber, G. Herzberg, Molecular spectra and molecular structure IV. Constants of diatomic molecules (Van Nostrand Reinhold Company, New York, 1979)

    Google Scholar 

Download references

Funding

This work was supported by the 2018-2019 Start-Up Funds of the University of Puerto Rico at Cayey. Computational resources were provided by the High-Performance Computing Facility at the University of Puerto Rico. This project was also supported in part by the National Institute of General Medical Sciences of the National Institutes of Health through Grant NIH NIGMS/INBRE P20 GM103475-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Santana.

Ethics declarations

Disclaimer

Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the NIGMS or NIH.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, J.A. DFT Calculations of the Adsorption States of O2 on OH/H2O-Covered Pt(111). Electrocatalysis 11, 612–617 (2020). https://doi.org/10.1007/s12678-020-00619-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00619-6

Keywords

Navigation