Skip to main content
Log in

Molecular characterization and expression patterns of heat shock proteins in Spodoptera littoralis, heat shock or immune response?

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The Egyptian cotton leaf worm, Spodoptera littoralis (Boisd.), is a major agricultural lepidopterous pest causing extensive damage in a variety of crops including vegetable, cotton, fodder, and fiber crops. Heat shock protein (HSP) family members play important roles in protecting insects against environmental stressors. In this study, we characterized three putative heat shock proteins (SpliHsp70, SpliHsp90, and SpliHSF) from S. littoralis and analyzed their expression levels in response to heat, cold, ultraviolet irradiation, Bacillus thuringiensis, and Spodoptera littoralis nucleopolyhedrovirus treatments. Significant upregulation of SpliHsp70 was observed in female pupae, while the highest expression levels of SpliHsp90 and SpliHSF were found in female adults. Heat shock triggered increases in SpliHsp levels compared to cold treatment. SpliHsp90 exhibited the highest expression levels during the first 30 min of UV treatment. Both bacterial and viral pathogenic agents effected the regulation of Hsps in S. littoralis. These findings suggest that SpliHsp genes might play significant roles in the response to biotic and abiotic stress, as well as in the regulation of developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams NL, Shick JM (2001) Mycosporine-like amino acids prevent UVB-induced abnormalities during early development of the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 138:267–280

    CAS  Google Scholar 

  • Balachowsky AS (1972) Entomologie appliquée à l'agriculture, 2nd edn. Lépidoptères, Paris, pp 1131–1133

    Google Scholar 

  • Benoit JB, Lopez-Martinez G, Phillips ZP, Patrick KR, Denlinger DL (2010) Heat shock proteins contribute to mosquito dehydration tolerance. J Insect Physiol 56:151–156

    CAS  PubMed  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Patrick KR, Phillips ZP, Krause TB, Denlinger DL (2011) Drinking a hot blood meal elicits a protective heat shock response in mosquitoes. Proc Natl Acad Sci U S A 108:8026–8029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    CAS  PubMed  Google Scholar 

  • Braeckman B, Smagghe G, Brutsaert N, Cornelis R, Raes H (1999) Cadmium uptake and defense mechanism in insect cells. Environ Res 80:231–243

    CAS  PubMed  Google Scholar 

  • Chen W, Li D, Zhang M, Zhao Y, Wu W, Zhang G (2015) Cloning and differential expression of five heat shock protein genes associated with thermal stress and development in the polyphagous predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae). Exp Appl Acarol 67:65–85

    CAS  PubMed  Google Scholar 

  • Chen W, Geng SL, Song Z, Li YJ, Wang H, Cao JY (2018) Alternative splicing and expression analysis of HSF1 in diapause pupal brains in the cotton bollworm, Helicoverpa armigera. Pest Manag Sci 75:1258–1269

    PubMed  Google Scholar 

  • Choi BG, Hepat R, Kim Y (2014) RNA interference of a heat shock protein, Hsp70, loses its protection role in indirect chilling injury to the beet armyworm, Spodoptera exigua. Comp Biochem Physiol A Mol Integr Physiol 168:90–95

    CAS  PubMed  Google Scholar 

  • Datkhile KD, Mukhopadhyaya R, Dongre TK, Nath BB (2011) Hsp70 expression in Chironomus ramosus exposed to gamma radiation. Int J Radiat Biol 87:213–221

    CAS  PubMed  Google Scholar 

  • de Morais GS, Vitorino R, Domingues R, Tomer K, Correia AF, Amado F, Domingues P (2005) Proteomics of immune-challenged Drosophila melanogaster larvae hemolymph. Biochem Biophys Res Commun 328(1):106–115

    Google Scholar 

  • Denlinger DL, Rinehart JP, Yocum GD, Denlinger DL, Giebultowicz JM, Saunders DS (2001) Stress proteins: a role in insect diapause? In Insect timing: circadian rhythmicity to seasonality, Elsevier Science BV., Amsterdam, pp. 155-171

  • Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat Immunol 6:946–953

    CAS  PubMed  Google Scholar 

  • Dubovskiy IM, Whitten MM, Yaroslavtseva ON, Greig C, Kryukov VY, Grizanova EV et al (2013) Can insects develop resistance to insect pathogenic fungi? PLoS One 8:e60248

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Guindy MA, Keddis NE, Abd El-Satter MM, Ghonieim YA (1989) Status of resistance to pesticides in the cotton leaf worm S. littoralis (Boisd.), under the present Egyptian cotton pest control programme. In Proc 1st Int Conf Ent 11:453–462

    Google Scholar 

  • Feder EM, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    CAS  PubMed  Google Scholar 

  • Freeman BC, Myers MP, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19:4–19

    CAS  PubMed  Google Scholar 

  • Gu J, Huang LX, Shen Y, Huang LH, Feng QL (2012) Hsp70 and small Hsps are the major heat shock protein members involved in midgut metamorphosis in the common cut worm, Spodoptera litura. Insect Mol Biol 21:535–543

    CAS  PubMed  Google Scholar 

  • Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12:1063–1073

    CAS  PubMed  Google Scholar 

  • Gupta RS, Singh B (1994) Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol 4:1104–1114

    CAS  PubMed  Google Scholar 

  • Guz N, Dağeri A, Erdoğan T, Mousavi M, Bayram Ş, Gürkan MO (2013) Transcriptional profiling of transferrin gene from Egyptian cotton leafworm, Spodoptera littoralis. Turk J Biol 37:582–590

    CAS  Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    CAS  PubMed  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    CAS  PubMed  Google Scholar 

  • Huang LH, Kang L (2007) Cloning and interspecific altered expression of heat shock protein genes in two leaf miner species in response to thermal stress. Insect Mol Biol 16:491–500

    PubMed  Google Scholar 

  • Iryani MTM, MacRae TH, Panchakshari S, Tan J, Bossier P, Wahid MEA, Sung YY (2017) Knockdown of heat shock protein 70 (Hsp70) by RNAi reduces the tolerance of Artemia franciscana nauplii to heat and bacterial infection. J Exp Mar Biol Ecol 487:106–112

    CAS  Google Scholar 

  • Issa YH, Keddis ME, Ayad FA, Abdel-Sattar MM, El-Guindy MA (1984a) Survey of resistance to organophosphorous insecticides in field strains of the cotton leafworm Spodoptera littoralis (Boisd.) during 1980-1984 cotton growing seasons. Bulletin of the Entomological Society of Egypt. Economic Series 14:399–404

    Google Scholar 

  • Issa YH, Keddis ME, Abdel-Sattar MA, Ayad FA, El-Guindy MA (1984b) Survey of resistance to pyrethroids in field strains of the cotton leafworm Spodoptera littoralis (Boisd.) during 1980-1984 cotton growing seasons. Bulletin of the Entomological Society of Egypt. Economic Series 14:405–411

    Google Scholar 

  • Jiang X, Zhai H, Wang L, Luo L, Sappington TW, Zhang L (2012) Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development. Cell Stress Chaperones 17:67–80

    CAS  PubMed  Google Scholar 

  • Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    CAS  PubMed  Google Scholar 

  • Joplin KH, Denlinger DL (1990) Developmental and tissue specific control of the heat shock induced 70 kDa related proteins in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 36:239–249

    CAS  Google Scholar 

  • Junprung W, Norouzitallab P, De Vos S, Tassanakajon A, Viet DN, Van Stappen G, Bossier P (2019) Sequence and expression analysis of HSP70 family genes in Artemia franciscana. Sci Rep 9:1–13

    Google Scholar 

  • Kemp C, Mueller S, Goto A, Barbier V, Paro S, Bonnay F, Dostert C, Troxler L, Hetru C, Meignin C, Pfeffer S, Hoffmann JA, Imler JL (2013) Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J Immunol 190:650–658

    CAS  PubMed  Google Scholar 

  • Kim Y, Kim N (1997) Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environ Entomol 26:1117–1123

    Google Scholar 

  • Krebs RA, Feder ME (1997) Tissue-specific variation in Hsp70 expression and thermal damage in Drosophila melanogaster larvae. J Exp Biol 200(14):2007–2015

    CAS  PubMed  Google Scholar 

  • Lah EFC, Musa RNAR, Ming HT (2012) Effect of germicidal UV-C light (254 nm) on eggs and adult of house dustmites, Dermatophagoides pteronyssinus and Dermatophagoides farinae (Astigmata: Pyroglyhidae). Asian Pac J Trop Biomed 2:679–683

    PubMed  PubMed Central  Google Scholar 

  • Lakhotia SC, Singh AK (1989) A novel set of heat shock polypeptides in Malpighian tubules of Drosophila melanogaster. J Genet 68:129–137

    CAS  Google Scholar 

  • Lakhotia SC, Singh BN (1996) Synthesis of a ubiquitously present new HSP60 family protein is enhanced by heat shock only in the Malpighian tubules of Drosophila. Experientia 52:751–756

    CAS  PubMed  Google Scholar 

  • Landais I, Pommet JM, Mita K, Nohata J, Gimenez S, Fournier P, Devauchelle G, Duonor-Cerutti M, Ogliastro M (2001) Characterization of the cDNA encoding the 90 kDa heat-shock protein in the Lepidoptera Bombyx mori and Spodoptera frugiperda. Gene 271:223–231

    CAS  PubMed  Google Scholar 

  • Lee RE, Denlinger DL (1991) Insects at Low Temperature. Chapman and Hall, New York

    Google Scholar 

  • Li Y, Zhao Q, Duan X, Song C, Chen M (2017) Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure. Comp Biochem Physiol A Mol Integr Physiol 205:48–57

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  • Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE Jr, Denlinger DL (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol 38:796–804

    CAS  PubMed  Google Scholar 

  • Lyupina YV, Dmitrieva SB, Timokhova AV, Beljelarskaya SN, Zatsepina OG, Evgen'ev MB, Mikhailov VS (2010) An important role of the heat shock response in infected cells for replication of baculoviruses. Virology 406:336–341

    CAS  PubMed  Google Scholar 

  • Mahroof R, Zhu KY, Neven L, Subramanyam B, Bai J (2005) Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comp Biochem Physiol A Mol Integr Physiol 141:247–256

    PubMed  Google Scholar 

  • Marchler-Bauer A et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:200–203

    Google Scholar 

  • Michel T, Reichhart JM, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756–759

    CAS  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    CAS  PubMed  Google Scholar 

  • Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TTA, Michaud D, Cloutier C (2009) A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress. Insect Biochem Mol Biol 39:20–30

    CAS  PubMed  Google Scholar 

  • Pan LN, Wang FZ, Zhang XY, Zhao YN, Zhu GP, Li M (2018) Identification and characterization of heat shock proteins in a parasitic wasp Chouioia cuneae (Hymenoptera: Eulophidae). Entomol Res 48:145–155

    CAS  Google Scholar 

  • Pattison DI, Davies MJ (2006) Actions of ultraviolet light on cellular structures. In Cancer: cell structures, carcinogens and genomic instability, Birkhäuser Basel pp. 131-157

  • Pirkkala L, Nykanen P, Sistonen LEA (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    CAS  PubMed  Google Scholar 

  • Rashwan MH, Elbaramawy ZA, El-Sheikh AE, Radwan HSA (1992) The onset of organophosphate and carabamate resistance among lower Egypt population of the cotton leafworm S. littoralis (Boisd). Bull Ent Soc Egypt Econ Ser 19:211–220

    Google Scholar 

  • Renault D, Salin C, Vannier G, Vernon P (2002) Survival at low temperatures in insects: what is the ecological significance of the supercooling point? CryoLetters 23:217–228

    CAS  PubMed  Google Scholar 

  • Richards EH, Dani MP, Lu Y, Butt T, Weaver RJ (2017) Effect of stress on heat shock protein levels, immune response and survival to fungal infection of Mamestra brassicae larvae. J Insect Physiol 96:53–63

    CAS  PubMed  Google Scholar 

  • Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SAL, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. PNAS 104:11130–11137

    CAS  PubMed  Google Scholar 

  • Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales C (2017) Cellular and molecular mechanisms of insect immunity. Insect Physiology and Ecology. InTeach Publication, CCBY: London, pp. 179-212

  • Sang W, Ma WH, Qiu L, Zhu ZH, Lei CL (2012) The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum. J Insect Physiol 58:830–836

    CAS  PubMed  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop—a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci 15:430–434

    PubMed  Google Scholar 

  • Saravanakumar R, Ponnuvel KM, Qadri SMH (2008) Expression of metabolic enzyme genes and heat-shock protein genes during embryonic development in diapause and non-diapause egg of multivoltine silkworm Bombyx mori. Biologia 63:737–744

    CAS  Google Scholar 

  • Sharma S, Reddy PVJ, Rohilla MS, Tiwari PK (2006) Expression of HSP60 homologue in sheep blowfly Lucilia cuprina during development and heat stress. J Therm Biol 31:546–555

    CAS  Google Scholar 

  • Shen Y, Gu J, Huang LH, Zheng SC, Liu L, Xu WH, Feng QL, Kang L (2011) Cloning and expression analysis of six small heat shock protein genes in the common cutworm, Spodoptera litura. J Insect Physiol 57:908–914

    CAS  PubMed  Google Scholar 

  • Shu Y, Du Y, Wang J (2011) Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress. Comp Biochem Physiol A Mol Integr Physiol 158:102–110

    PubMed  Google Scholar 

  • Simon MM, Reikerstorfer A, Schwarz A, Krone C, Luger TA, Jäättelä M, Schwarz T (1995) Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Investig 95:926

    CAS  PubMed  Google Scholar 

  • Sneh B, Schuster S, Broza M (1981) Insecticidal activity of Bacillus thuringiensis strains against the egyptian cotton leaf worm Spodoptera littoralis [Lep.: Nocutidae]. Entomophaga 26:179–190

    Google Scholar 

  • Song KH, Jung SJ, Seo YR, Kang SW, Han SS (2006) Identification of up-regulated proteins in the hemolymph of immunized Bombyx mori larvae. Comp Biochem Phys D 1:260–266

    Google Scholar 

  • Sonoda S, Ashfaq M, Tsumuki H (2006) Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19. 5) from the diamondback moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch Insect Biochem Physiol: Published in Collaboration with the Entomological Society of America 62:80–90

    CAS  Google Scholar 

  • Sonoda S, Ashfaq M, Tsumuki H (2007) A comparison of heat shock protein genes from cultured cells of the cabbage armyworm, Mamestra brassicae, in response to heavy metals. Arch Insect Biochem Physiol: Published in Collaboration with the Entomological Society of America 65:210–222

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari PK, Mohan DRK, Joshi A (1995) Developmental study of thermotolerance and the heat shock response in Lucilia cuprina (Weidemann). J Biosci 20:341–354

    Google Scholar 

  • Tsakas S, Marmaras VJ (2010) Insect immunity and its signalling: an overview. Invertebr Surviv J 2010(7):228–238

    Google Scholar 

  • Tungjitwitayakul J, Tatun N, Vajarasathira B, Sakurai S (2015) Expression of heat shock protein genes in different developmental stages and after temperature stress in the maize weevil (Coleoptera: Curculionidae). J Insect Physiol 108:1313–1323

    CAS  Google Scholar 

  • Velazquez JM, Sonoda S, Bugaisky G, Lindquist S (1983) Is the major Drosophila heat shock protein present in cells that have not been heat shocked? J Cell Biol 96:586–290

    Google Scholar 

  • Wang LJ, Zhou LJ, Zhu ZH, Ma WH, Lei CL (2014) Differential temporal expression profiles of heat shock protein genes in Drosophila melanogaster (Diptera: Drosophilidae) under ultraviolet A radiation stress. Environ Entomol 43:1427–1434

    PubMed  Google Scholar 

  • Williams MJ (2007) Drosophila hemopoiesis and cellular immunity. J Immunol 178(8):4711–4716

    CAS  PubMed  Google Scholar 

  • Wojda I, Jakubowicz T (2007) Humoral immune response upon mild heat-shock conditions in Galleria mellonella larvae. J Insect Physiol 53:1134–1144

    CAS  PubMed  Google Scholar 

  • Wojda I, Kowalski P, Jakubowicz T (2009) Humoral immune response of Galleria mellonella larvae after infection by Beauveria bassiana under optimal and heat-shock conditions. J Insect Physiol 55:525–531

    CAS  PubMed  Google Scholar 

  • Wrońska AK, Boguś MI (2020) Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales). PLoS One 15:e0228556

    PubMed  PubMed Central  Google Scholar 

  • Wu G, Yunhong Y (2018) Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Mol Immunol 103:220–228

    CAS  PubMed  Google Scholar 

  • Xu Q, Zou Q, Zheng H, Zhang F, Tang B, Wang S (2011) Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comp Biochem Physiol B: Biochem Mol Biol 159:92–102

    Google Scholar 

  • Zhang Q, Denlinger DL (2010) Molecular characterization of heat shock protein 90, 70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm. J Insect Physiol 56:138–150

    CAS  PubMed  Google Scholar 

  • Zhang LJ, Wang KF, Jing YP, Zhuang HM, Wu G (2015) Identification of heat shock protein genes hsp70s and hsc70 and their associated mRNA expression under heat stress in insecticide-resistant and susceptible diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Eur J Entomol 112:215–226

    Google Scholar 

  • Zhao L, Jones WA (2012) Expression of heat shock protein genes in insect stress responses. Invertebr Surviv J 9:93–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Nurper Guz, Asli Dageri]; Methodology: [Nurper Guz, Asli Dageri, Boran Altincicek]; Formal analysis and investigation: [Nurper Guz, Asli Dageri, Boran Altincicek]; Writing—original draft preparation: [Nurper Guz, Asli Dageri, Boran Altincicek, Serap Aksoy]; Writing—review and editing: [Nurper Guz, Asli Dageri, Boran Altincicek, Serap Aksoy]; Funding acquisition: [Nurper Guz]; Resources: [Nurper Guz]; Supervision: [Boran Altincicek, Serap Aksoy]; Data curation: [Nurper Guz, Asli Dageri, Boran Altincicek, Serap Aksoy]; Project Administration: [Nurper Guz]; Software: [Nurper Guz, Asli Dageri]; Validation: [Nurper Guz, Asli Dageri, Boran Altincicek, Serap Aksoy]; Visualization: [Nurper Guz, Asli Dageri].

Corresponding author

Correspondence to Nurper Guz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guz, N., Dageri, A., Altincicek, B. et al. Molecular characterization and expression patterns of heat shock proteins in Spodoptera littoralis, heat shock or immune response?. Cell Stress and Chaperones 26, 29–40 (2021). https://doi.org/10.1007/s12192-020-01149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-020-01149-2

Keywords

Navigation