Skip to main content
Log in

Temperature-dependent changes in active nitrifying communities in response to field fertilization legacy

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Using DNA-based stable isotope probing (SIP) in microcosms, we demonstrate the shifts in active nitrifying communities in soil from field plots imposed by 8 years of mineral fertilizer N (NPK) or manure (M) applications compared with an unfertilized control (CK), and associated shifts in their temperature sensitivity. DNA-SIP indicates that ammonia-oxidizing archaea (AOA) were labeled to a much greater extent in the CK soil (74.6%) than in the NPK-amended (19.8%) or M-amended (27.1%) soils at 28 °C. In contrast, NPK soil showed the highest labeling of ammonia-oxidizing bacteria (AOB) (23.3%) relative to M (4.03%) and CK (2.42%) soils. This is further supported by significant decreases in the 13C-amoA gene ratios of AOA/AOB in the NPK (4.14) and M (8.63) compared with CK (46.4) soils at 28 °C, while little difference was observed at 35 °C. The relative abundance of active AOA or AOB in the manure was between that in the CK and NPK soils. This may be attributable to the slower release of ammonium mineralized from manure than from urea. The active AOA in soil microcosms were dominated by Nitrososphaera viennensis-like groups regardless of fertilization history or temperature. Nitrosomonas communis-like AOB may be more adapted to the higher temperature than Nitrosospira cluster 3-like AOB. The labeling of nitrite oxidizers (nitrite-oxidizing bacteria) was lowest in NPK soil and was higher at 28 °C than 35 °C regardless of fertilization treatment. The finding indicates that intensified anthropogenic N inputs in the field may select for distinct active nitrifying communities that exhibited different temperature sensitivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves RJE, Wanek W, Zappe A, Richter A, Svenning MM, Schleper C, Urich T (2013) Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J 7:1620–1631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bei S, Zhang Y, Li T, Christie P, Li X, Zhang J (2018) Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agric Ecosyst Environ 260:58–69

    Google Scholar 

  • Berg P, Klemedtsson L, Rosswall T (1982) Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biol Biochem 14:301–303

    CAS  Google Scholar 

  • Blackburne R, Vadivelu VM, Yuan ZG, Keller J (2007) Determination of growth rate and yield of nitrifying bacteria by measuring carbon dioxide uptake rate. Water Environ Res 79:2437–2445

    CAS  PubMed  Google Scholar 

  • Bremner JM (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55:11–33

    CAS  Google Scholar 

  • Chadwick D, Jia W, Tong Ya YG, Shen Q, Chen Q (2015) Improving manure nutrient management towards sustainable agricultural intensification in China. Agric Ecosyst Environ 209:34–46

    Google Scholar 

  • Chu H, Fujii T, Morimoto S, Lin X, Yagi K, Hu J, Zhang J (2007) Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microbiol 73:485–491

    CAS  PubMed  Google Scholar 

  • Daebeler A, Bodelier PL, Yan Z, Hefting MM, Jia Z, Laanbroek HJ (2014) Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J 8:2397–2410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daims H, Lucker S, Wagner M (2016) A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol 24:699–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • de la Torre JR, Walker CB, Ingalls AE, Konneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    PubMed  Google Scholar 

  • Duan P, Wu Z, Zhang Q, Fan C, Xiong Z (2018) Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils. Soil Biol Biochem 120:37–47

    CAS  Google Scholar 

  • Food and Agricultural Organization of the United Nations (FAO) (2018) Statistics Division of the Food and Agricultural Organization of the United Nations (FAOSTAT). Available at: http://www.fao.org/faostat/ (accessed November 28, 2018)

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Bruna G, Galloway JN (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond 368:20130164

    Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ Microbiol 8:684–696

    CAS  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Jan Willem E, Mateete B, Zucong C, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    CAS  PubMed  Google Scholar 

  • Gubry-Rangin C, Novotnik B, Mandič-Mulec I, Nicol GW, Prosser JI (2017) Temperature responses of soil ammonia-oxidising archaea depend on pH. Soil Biol Biochem 106:61–68

    CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    CAS  PubMed  Google Scholar 

  • Guo J, Ling N, Chen H, Zhu C, Kong Y, Wang M, Shen Q, Guo S (2017) Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: evidence from a long-term field experiment. Soil Biol Biochem 115:403–414

    CAS  Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    CAS  PubMed  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105:2134–2139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isobe K, Koba K, Suwa Y, Ikutani J, Fang YT, Yoh M, Mo JM, Otsuka S, Senoo K (2012) High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition. FEMS Microbiol Ecol 80:193–203

    CAS  PubMed  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    CAS  PubMed  Google Scholar 

  • Jia ZJ, Hu XJ, Xia WW, Fornara D, Nannipieri P, Tiedje J (2019) Community shift of microbial ammonia oxidizers in air-dried rice soils after 22 years of nitrogen fertilization. Biol Fertil Soils 55:419–424

    CAS  Google Scholar 

  • Jiang QQ, Bakken LR (1999) Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol Ecol 30:171–186

    CAS  PubMed  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106:3041–3046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung M, Park S, Min D, Kim J, Rijpstra WIC, Damste JSS, Kim G, Madsen EL, Rhee S (2011) Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl Environ Microbiol 77:8635–8647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JG, Jung MY, Park SJ, Rijpstra WI, Sinninghe Damste JS, Madsen EL, Min D, Kim JS, Kim GJ, Rhee SK (2012) Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ Microbiol 14:1528–1543

    CAS  PubMed  Google Scholar 

  • Koops HP, Purkhold U, Pommerening-Roser A, Timmermann G, Wagner M (2006) The lithoautotrophic ammonia-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 778–811

    Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 105011:105011

    Google Scholar 

  • Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 108:15892–15897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI, Nicol GW (2016) Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 92:5

    Google Scholar 

  • Levicnik-Hoefferle S, Nicol GW, Ausec L, Mandic-Mulec I, Prosser JI (2012) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 80:114–123

    Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    CAS  PubMed  Google Scholar 

  • Liu H, Li J, Zhao Y, Xie K, Tang X, Wang S, Li Z, Liao Y, Xu J, Di H, Li Y (2018) Ammonia oxidizers and nitrite-oxidizing bacteria respond differently to long-term manure application in four paddy soils of south of China. Sci Total Environ 633:641–648

    CAS  PubMed  Google Scholar 

  • Lu L, Jia Z (2013) Urease gene-containing archaea dominate autotrophic ammonia oxidation in two acid soils. Environ Microbiol 15:1795–1809

    CAS  PubMed  Google Scholar 

  • Lu L, Han W, Zhang J, Wu Y, Wang B, Lin X, Zhu J, Cai Z, Jia Z (2012) Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J 6:1978–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, Daims H (2006) Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol 8:1487–1495

    CAS  PubMed  Google Scholar 

  • Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhtar H, Lin YP, Lin CM, Lin YR (2019) Relative abundance of ammonia oxidizing archaea and bacteria influences soil nitrification responses to temperature. Microorganisms 7:256

    Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis: Part 3 Chemical methods. Madison, WI: SSSA, pp 961–1010

  • Nowka B, Daims H, Spieck E (2015) Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl Environ Microbiol 81:745–753

    PubMed  PubMed Central  Google Scholar 

  • Off S, Alawi M, Spieck E (2010) Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge. Appl Environ Microbiol 76:4640–4646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen SR, Watanabe F (1957) A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Sci Soc Amer Proc 21:144–149

    CAS  Google Scholar 

  • Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY (2016) Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol Biochem 96:4–15

    CAS  Google Scholar 

  • Ouyang Y, Norton JM, Stark JM (2017) Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biol Biochem 113:161–172

    CAS  Google Scholar 

  • Pan H, Xie K, Zhang Q, Jia Z, Xu J, Di H, Li Y (2018) Archaea and bacteria respectively dominate nitrification in lightly and heavily grazed soil in a grassland system. Biol Fertil Soils 54:41–54

    CAS  Google Scholar 

  • Park MR, Park H, Chandran K (2017) Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge. Environ Sci Technol 51:2720–2728

    CAS  PubMed  Google Scholar 

  • Powlson DS, Norse D, Lu YL (2018) Agricultural development in China: environmental impacts, sustainability issues and policy implications assessed through China-UK projects under SAIN (UK-China Sustainable Agriculture Innovation Network), 2008–2017. 1–32. SAIN Working Paper no.1 (accessed February, 2018); http://www.sainonline.org/pages/News/SAIN%20Working%20Paper%20No%201.pdf.

  • Prosser JI, Hink L, Gubry-Rangin C, Nicol GW (2020) Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Glob Chang Biol 26:103–118

    PubMed  Google Scholar 

  • Rice MC, Norton JM, Valois F, Bollmann A, Bottomley PJ, Klotz MG, Laanbroek HJ, Suwa Y, Stein LY, Sayavedra-Soto L, Woyke T, Shapiro N, Goodwin LA, Huntemann M, Clum A, Pillay M, Kyrpides N, Varghese N, Mikhailova N, Markowitz V, Palaniappan K, Ivanova N, Stamatis D, Reddy TBK, Ngan CY, Daum C (2016) Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. Stand Genomic Sci 11:46

    PubMed  PubMed Central  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Zhang L, Zhu Y, Zhang J, He J (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    CAS  PubMed  Google Scholar 

  • Song X, Liu M, Ju X, Gao B, Su F, Chen X, Rees RM (2018) Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain. Environ Sci Technol 52:12504–12513

    CAS  PubMed  Google Scholar 

  • Stubner S (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection. J Microbiol Methods 50:155–164

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Taylor AE, Vajrala N, Giguere AT, Gitelman AI, Arp DJ, Myrold DD, Sayavedra-Soto L, Bottomley PJ (2013) Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammoniaoxidizing thaumarchaea and bacteria. Appl Environ Microbiol 79:6544–6551

  • Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 108:8420–8425

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Hj ODC, Kartal B, Jetten MS, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    PubMed  PubMed Central  Google Scholar 

  • Walker JM, Barber SA (1962) Absorption of potassium and rubidium from the soil by corn roots. Plant Soil 17:243–259

    CAS  Google Scholar 

  • Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z (2015) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9:1062–1075

    CAS  PubMed  Google Scholar 

  • Wu Y, Lu L, Wang B, Lin X, Zhu J, Cai Z, Yan X, Jia Z (2011) Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil. Soil Sci Soc Am J 75:1431–1439

    CAS  Google Scholar 

  • Wu Y, Ke X, Hernández M, Wang B, Dumont MG, Jia Z, Conrad R (2013) Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures. Appl Environ Microbiol 79:3076–3084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z, Jia Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ren Y, Wang X, Hu Y, Wang Z, Zeng Z (2017) Ammonia-oxidizing archaea and bacteria responding differently to fertilizer type and irrigation frequency as revealed by Illumina MiSeq sequencing. J Soils Sed 18:1029–1040

    Google Scholar 

  • Zhang L, Offre PR, He J, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci USA 107:17240–17245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Cui Z, Fan M, Zhang W, Chen X, Jiang R (2011) Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J Environ Qual 40:1051–1057

    CAS  PubMed  Google Scholar 

  • Zhang Y, Hao X, Alexander TW, Thomas BW, Shi X, Lupwayi NZ (2018) Long-term and legacy effects of manure application on soil microbial community composition. Biol Fertil Soils 54:269–283

    CAS  Google Scholar 

  • Zhao J, Wang B, Jia Z (2015) Phylogenetically distinct phylotypes modulate nitrification in a paddy soil. Appl Environ Microbiol 81:3218–3227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Fornara D, Wasson EA, Wang D, Ren G, Christie P, Jia Z (2015) Effects of 44 years of chronic nitrogen fertilization on the soil nitrifying community of permanent grassland. Soil Biol Biochem 91:76–83

    CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (31872182, 41530857), the National Basic Research Program of China (2015CB150501), and the National Key Research and Development Program of China (2016YFE0101100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongjun Jia or Junling Zhang.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bei, S., Tian, Y., Zhao, J. et al. Temperature-dependent changes in active nitrifying communities in response to field fertilization legacy. Biol Fertil Soils 57, 1–14 (2021). https://doi.org/10.1007/s00374-020-01500-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-020-01500-w

Keywords

Navigation