Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 3, 2020

Separation of radiosilver from a cyclotron-irradiated palladium target

  • Tomoyuki Ohya EMAIL logo , Kotaro Nagatsu , Masayuki Hanyu , Katsuyuki Minegishi and Ming-Rong Zhang
From the journal Radiochimica Acta

Abstract

We studied the simple separation of radiosilvers from proton- or deuteron-irradiated natural palladium (natPd) targets, and successfully separated radiorhodium, radiosilver and radiopalladium using an anion-exchange resin. The yields of radiosilvers were 105Ag: 1.0 ± 0.32 MBq/μAh; 106mAg: 2.0 ± 0.64 MBq/μAh; 110mAg: 0.019 ± 0.0063 MBq/μAh (n = 4) at the end of bombardment with a total recovery rate of 98 % under the following irradiation conditions (deuteron beam energy: 20 MeV; beam current: 10 μA; irradiation time: 2.25 ± 0.50 h). We also evaluated the recycling of the palladium target.


Corresponding author: Tomoyuki Ohya, PhD, Department of Radiopharmaceuticals Development, National Institutes for Quantum and Radiological Science and Technology (NIRS-QST), 4-9-1 Anagawa, Inage-ku, Chiba263-8555, Japan

Acknowledgements

The authors thank the cyclotron staff for their operation of the NIRS cyclotron and their support. We also acknowledge the technical support of Shimadzu Techno-Research. This work was supported by JSPS KAKENHI Grant Number JP17K10386. We thank Adam Brotchie, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

1. National Nuclear Data Center: NuDat 2.7., Brookhaven National Laboratory, NY. Available online at http://www.nndc.bnl.gov/chart/.Search in Google Scholar

2. Sabbioni, E., Pietra, R., Edel, J., Di Nucci, A., Manzo, L., Candioli, E., Tolu, G., Bonardi, M.: Environment and quality of life: a silver-containing pharmaceutical product: study of the absorption of silver in rats by 105+106Ag radiotracer and assessment of the potential health impact. Directorate-General Science, Research and Development Joint Research Center. Catalogue number; CD-NA-12058-EN-C, published by the Commission of the European Communities.Search in Google Scholar

3. Sabbioni, E., Bonardi, M., Gallorini, M., Pietra, R., Fortaner, S., Tartaglia, G. P., Groppi, F.: Application of radiotracers with high specific radioactivity to metallotoxicological studies. J. Radioanal. Nucl. Chem. 160, 493 (1992).10.1007/BF02037125Search in Google Scholar

4. Sommer, J., Herzig, C.: Direct determination of grain-boundary and dislocation self-diffusion coefficients in silver from experiments in type-C kinetics. J. Appl. Phys. 72, 2758 (1992).10.1063/1.352328Search in Google Scholar

5. Kassem, M., Alekseev, I., Bokova, M., Le Coq, D., Bychkov, E.: Ionic-to-electronic conductivity crossover in CdTe−AgI−As2Te3 glasses: An 110mAg tracer diffusion study. J. Phys. Chem. B 122, 4179 (2018).10.1021/acs.jpcb.8b00739Search in Google Scholar

6. Adam, C., Garnier-Laplace, J.: Bioaccumulation of silver-110m, cobalt-60, cesium-137, and manganese-54 by the freshwater algae Scenedesmus obliquus and Cyclotella meneghiana and by suspended matter collected during a summer bloom event. Limnol. Oceanogr. 48, 2303 (2003).10.4319/lo.2003.48.6.2303Search in Google Scholar

7. Roditi, H. A., Fisher, N. S.: Rates and routes of trace element uptake in zebra mussels. Limnol. Oceanogr. 44, 1730 (1999).10.4319/lo.1999.44.7.1730Search in Google Scholar

8. Szabó, G., Guczi, J., Valyon, J., Bulman, R. A.: Investigations of the sorption characteristics of radiosilver on some natural and artificial soil particles. Sci. Total Environ. 172, 65 (1995).10.1016/0048-9697(95)04781-6Search in Google Scholar

9. Aweda, T. A., Ikotun, O., Mastren, T., Cannon, C. L., Wright, B., Youngs, W. J., Cutler, C., Guthrie, J., Lapi, S. E.: The use of 111Ag as a tool for studying biological distribution of silver-based antimicrobials. Medchemcomm 4, 1015 (2013).10.1039/c3md00082fSearch in Google Scholar

10. Alberto, R., Bläuenstein, P., Novak-Hofer, I., Smith, A., Schubiger, P. A.: An improved method for the sepration of 111Ag from irradiated natural palladium. Appl. Radiat. Isot. 43, 869 (1992).10.1016/0883-2889(92)90148-8Search in Google Scholar

11. Chattopadhyay, S., Vimalnath, K. V., Saha, S., Korde, A., Sarma, H. D., Pal, S., Das, M. K.: Preparation and evaluation of a new radiopharmaceutical for radiosynovectomy, 111Ag-labelled hydroxyapatite (HA) particles. Appl. Radiat. Isot. 66, 334 (2008).10.1016/j.apradiso.2007.09.003Search in Google Scholar PubMed

12. Pulit-Prociak, J., Banach, M.: Silver nanoparticles – a material of the future…? Open Chem. 14, 76 (2016).10.1515/chem-2016-0005Search in Google Scholar

13. Al-Sid-Cheikh, M., Pelletier, É., Rouleau, C.: Synthesis and characterization of [110mAg]-nanoparticles with application to whole-body autoradiography of aquatic organisms. Appl. Radiat. Isot. 69, 1415 (2011).10.1016/j.apradiso.2011.06.017Search in Google Scholar

14. Zhao, C.-M., Wang, W.-X.: Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 46, 11345 (2012).10.1021/es3014375Search in Google Scholar

15. Ichedef, C., Simonelli, F., Holzwarth, U., Pieela Bagaria, J., Puntes V. F., Cotogno, G., Gilliland, D., Gibson, N.: Radiochemical synthesis of 105gAg-labelled silver nanoparticles. J. Nanopart. Res. 15, 2073 (2013).10.1007/s11051-013-2073-8Search in Google Scholar

16. Khandaker, M. U., Kim, K., Kim, G., Otuka, N.: Cyclotron production of the 105,106mAg, 100,101Pd, 100,101m,105Rh radionuclides by natPd(p,x) nuclear processes. Nucl. Instrum. Methods Phys. Res. B 268, 2303 (2010).10.1016/j.nimb.2010.04.002Search in Google Scholar

17. Ditrói, F., Tárkányi, F., Takács, S., Hermanne, A., Ignatyuk, A. V.: Measurement of activation cross-section of long-lived products in deuteron induced nuclear reactions on palladium in the 30–50 MeV energy range. Appl. Radiat. Isot. 128, 297 (2017).10.1016/j.apradiso.2017.07.049Search in Google Scholar

18. Ukon, N., Aikawa, M., Komori, Y., Haba, H.: Production cross sections of deuteron-induced reactions on natural palladium for Ag isotopes. Nucl. Instrum. Methods Phys. Res. B 426, 13 (2018).10.1016/j.nimb.2018.04.019Search in Google Scholar

19. Schweitzer, G. K., Nehls, J. W.: Studies in low concentration chemistry. II. The radiocolloidal properties of silver-111. J. Am. Chem. Soc. 74, 6186 (1952).Search in Google Scholar

20. Khalid, M., Mushtaq, A., Iqbal, M. Z.: Separation of 111Ag from neutron irradiated natural palladium using alumina as an adsorbent. Appl. Radiat. Isot. 52, 19 (2000).10.1016/S0969-8043(99)00083-4Search in Google Scholar

21. Taylor, D. M.: The preparation of carrier-free silver-111. Int. J. Appl. Radiat. Isot. 12, 66 (1961).10.1016/0020-708X(61)90038-2Search in Google Scholar

22. Lyle, S. J., Maghzian, R.: Separation of carrier-free silver from neutron-irradiated palladium. Talanta 15, 712 (1968).10.1016/0039-9140(68)80158-4Search in Google Scholar

23. Mirza, M. Y.: Separation of carrier-free 111Ag from neutron irradiated palladium. Radiochim. Acta 14, 61 (1970).10.1524/ract.1970.14.2.61Search in Google Scholar

24. Mansur, M. S., Mushtaq, A., Muhammad, A.: Separation of 111Ag from neutron irradiated natural palladium. Radiochim. Acta 68, 161 (1995).10.1524/ract.1995.68.3.161Search in Google Scholar

25. Vimalnath, K. V., Saha, S., Chirayil, V.: Studies on the preparation of 109Pd and 111Ag by (n,γ) reactions on natural palladium for possible applications in radionuclide therapy. Nuclear and Radiochemistry Symposium (NUCAR2007) proceeding, 559 (2007), Vadodara, India.Search in Google Scholar

26. Haymond, H. R., Larson, K. H., Maxwell, R. D., Garrison, W. M., Hamilton, J. G.: Carrier-free radioitotopes from cyclotron targets.VI. Preparartion and isolation of Ag105,106,111 from palladium. J. Chem. Phys. 18, 391 (1950).10.1063/1.1747638Search in Google Scholar

27. Ambe, S., Ohkubo, Y., Iwamoto, M., Kobayashi, Y.: Preparation of carrier-free 111mCd and 105,106mAg and their chemical behavior. J. Radioanal. Nucl. Chem. 153, 235 (1991).10.1007/BF02202643Search in Google Scholar

28. Lahiri, S., Mukhopadhyay, B., Nandy, M., Das, N. R.: Sequential separation by HDEHP of carrier-free l01,105,106Rh, 103,104,105,106,110,112Ag and 104,105,107,109,111Cd produced in alpha-particle activated palladium. J. Radioanal. Nucl. Chem. 224, 155 (1997).10.1007/BF02034630Search in Google Scholar

29. Lahiri, S., Nandy, M., Mukhopadhyay, B.: Sequential separation of carrier free radioisotopes of rhodium, silver and cadmium produced in α-particle activated palladium by TOA. Appl. Radiat. Isot. 48, 1169 (1997).10.1016/S0969-8043(97)00116-4Search in Google Scholar

30. Nagatsu, K., Fukada, M., Minegishi, K., Suzuki, H., Fukumura, T., Yamazaki, H., Suzuki, K.: Fully automated production of iodine-124 using a vertical beam. Appl. Radiat. Isot. 69, 146 (2011).10.1016/j.apradiso.2010.09.010Search in Google Scholar

31. SRIM-2013. The stopping and range of ions in matter. Download available from a web at http://www.srim.org/.Search in Google Scholar

32. Yiğit, M.: Investigating the (p, n) excitation functions on 104−106,108,110Pd isotopes. Appl. Radiat. Isot. 130, 109 (2017).10.1016/j.apradiso.2017.09.027Search in Google Scholar

33. Sarioğlan, Ş.: Recovery of palladium from spent activated carbon-supported palladium catalysts. Platinum Metals Rev. 57, 289 (2013).10.1595/147106713X663988Search in Google Scholar

34. Scholz, K. L., Sodd, V. J., Blue, J. W.: Cyclotron production of Rh-101m through its precursor palladium-101. Int. J. Appl. Radiat. Isot. 28, 207 (1977).10.1016/0020-708X(77)90174-0Search in Google Scholar

35. Lagunas-Solar, M. C., Wilkins, S. R., Paulson, D. W.: Cyclotron production of rhodium-101m from natural palladium radiochemical methods and preliminary biological studies. J. Radional. Chem. 68, 245 (1982).10.1007/BF02517627Search in Google Scholar

36. Ditrói, F., Tárkányi, F., Takács, S., Hermanne, A., Ignatyuk, A.V., Baba, M.: Activation cross-sections of deuteron induced reactions on natural palladium. Nucl. Instrum. Methods Phys. Res. B 270, 61 (2012).10.1016/j.nimb.2011.10.010Search in Google Scholar

37. Hermanne, A., Takács, S., Tárkányi, F., Bolbos, R.: Cross section measurements of proton and deuteron induced formation of 103Ag in natural palladium. Radiochim. Acta 92, 215 (2004).10.1524/ract.92.4.215.35609Search in Google Scholar

38. Tárkányi, F., Hermanne, A., Király, B., Takács, S., Ditrói, F., Csikai, J., Fenyvesi, A., Uddin, M. S., Hagiwara, M., Baba, M., Ido, T., Shubin, Yu. N., Ignatyuk, A. V.: New cross-sections for production of 103Pd; review of charged particle production routes. Appl. Radiat. Isot. 67, 1574 (2009).10.1016/j.apradiso.2009.03.100Search in Google Scholar PubMed

Received: 2019-09-24
Accepted: 2019-12-28
Published Online: 2020-02-03
Published in Print: 2020-08-27

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3211/html
Scroll to top button