Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 12, 2020

Production of 67Cu by enriched 70Zn targets: first measurements of formation cross sections of 67Cu, 64Cu, 67Ga, 66Ga, 69mZn and 65Zn in interactions of 70Zn with protons above 45 MeV

  • Gaia Pupillo EMAIL logo , Liliana Mou , Petra Martini , Micòl Pasquali , Alessandra Boschi , Gianfranco Cicoria , Adriano Duatti , Férid Haddad and Juan Esposito
From the journal Radiochimica Acta

Abstract

Despite its insufficient availability, Copper-67 is currently attracting much attention for its enormous potential for cancer therapy as theranostic radionuclide. This work aims to accurately measure the unexplored cross section 70Zn(p,x)67Cu in the energy range 45–70 MeV and to evaluate its potential advantages in the case of high-intensity proton beams provided by compact cyclotrons. Thin target foils of enriched 70Zn were manufactured by lamination at the INFN-LNL and irradiated at the ARRONAX facility using the stacked-foils method. A radiochemical procedure for the separation of Cu, Ga and Zn contaminants and the isolation of 67Cu from the irradiated material was developed. The efficiency of the chemical processing was determined for each foil by monitoring the activity of selected tracer radionuclides (61Cu, 66Ga and 69mZn) through γ-spectrometry. Experimental data of the 70Zn(p,x)67Cu, 64Cu, 67Ga, 66Ga, 69mZn, 65Zn cross sections were measured for the first time in the energy range 45–70 MeV and compared with the theoretical results obtained by using the TALYS code. The 67Cu production yield by using enriched 70Zn thick targets was compared with the results obtained by using 68Zn targets in the same irradiation conditions.

Acknowledgements

This work was funded by INFN within the scope of the research project COME (COpper MEasurement, CSN3, Dotazioni LNL) and it was also included in the framework of the IAEA Coordinated Research Project (CRP) on “Therapeutic Radiopharmaceuticals Labelled with New Emerging Radionuclides (67Cu, 186Re, 47Sc)” (IAEA CRP No. F22053). It was also partially supported by a grant from the French National Agency for Research called “Investissements d’Avenir”, Equipex Arronax-Plus (ANR-11-EQPX-0004), Labex IRON (ANR-11-LABX-18-01) and ISITE NExT (ANR-16-IDEX-0007). Authors would like to thank Massimo Loriggiola (Target Laboratory at INFN-LNL) for manufacturing target foils and the staff at the ARRONAX facility for arranging all irradiation runs. Contribution from Dr. Thomas Sounalet (University of Nantes), Dr. Licia Uccelli (University of Ferrara) and Prof. Mario Marengo (S. Orsola Hospital in Bologna) for practical work in radiochemistry is gratefully acknowledged. Authors are also grateful to Prof. Giovanni Fiorentini (University of Ferrara) and Dr. Carlos Rossi Alvarez (INFN-LNL) for helpful discussion and to Dr. Pier Paolo Buso, Dr. Gian Pietro Bezzon, Dr. Alessandro Zanon, Dr. Stefania Canella and Dr. Sara Carturan (INFN-LNL) for their constant support.

References

1. Srivastava, S.: Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim. Acta 99, 635 (2011).10.1524/ract.2011.1882Search in Google Scholar

2. Srivastava, S.: A Bridge not too Far: Personalized Medicine with the use of Theranostic Radiopharmaceuticals. Postgrad. Med. Edu. Res. 47(1), 31 (2013).10.5005/jp-journals-10028-1054Search in Google Scholar

3. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L.: Measurement of pharmacokinetics of 86Y radiopharmaceuticals with PET and radiation dose calculation of analogous 90Y radiotherapeutics. J. Nucl. Med. 34, 2222 (1993).Search in Google Scholar

4. Qaim, S. M., Scholten, B., Neumaier, B.: New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 318, 1493 (2018).10.1007/s10967-018-6238-xSearch in Google Scholar

5. Shikata, E.: Research of radioisotope production with fast neutrons (VI) Preparation of Cu-67. J. Nucl. Sci. Technol. 1(5), 177 (1964).10.1080/18811248.1964.9732104Search in Google Scholar

6. Smith, N., Bowers, D., Ehst, D.: The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl. Radiat. Isot. 70(10), 2377 (2012).10.1016/j.apradiso.2012.07.009Search in Google Scholar PubMed

7. Qaim, S. M.: The present and future of medical radionuclide production. Radiochim. Acta 100, 635 (2012).10.1524/ract.2012.1966Search in Google Scholar

8. Qaim, S. M.: Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 44, 31 (2017).10.1016/j.nucmedbio.2016.08.016Search in Google Scholar PubMed

9. Boschi, A., Martini, P., Janevik-Ivanovska, E., Duatti A.: The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discovery Today 23(8), 1489 (2018).10.1016/j.drudis.2018.04.002Search in Google Scholar PubMed

10. Peng, F., Lu, X., Janisse, J., Muzik, O., Shields, A.: PET of human prostate cancer xenografts in mice with increased uptake of 64CuCl2. J. Nucl. Med. 47(10), 1649 (2006).Search in Google Scholar

11. Cai, H., Wu, J., Muzik, O., Hsieh, J., Lee, R., Peng, F., Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer. J. Nucl. Med. 55(4), 622 (2014).10.2967/jnumed.113.126979Search in Google Scholar PubMed PubMed Central

12. Sugo, Y., Hashimoto, K., Kawabata, M., Saeki, H., Sato, S., Tsukada, K., Nagai, Y.: Application of 67Cu produced by 68Zn(n,n’p+d)67Cu to biodistribution study in tumor-bearing mice. J. Phys. Soc. Jpn. 86(2), 023201 (2017).10.7566/JPSJ.86.023201Search in Google Scholar

13. Rowshanfarzad, P., Sabet, M., Jalilian, A., Kamalidehghan, M.: An overview of copper radionuclides and production of 61Cu by proton irradiation of natZn at a medical cyclotron. Appl. Radiat. Isot. 64(12), 1563 (2006).10.1016/j.apradiso.2005.11.012Search in Google Scholar

14. Qaim, S. M., Spahn, I.: Development of novel radionuclides for medical applications. J. Label. Compd. Radiopharm. 61, 126 (2018).10.1002/jlcr.3578Search in Google Scholar

15. Aliev, R., Belyshev, S., Kuznetsov, A., Dzhilavyan, L., Khankin, V., Aleshin, G., Kazakov, A., Priselkova, A., Kalmykov, S., Ishkhanov, B.: Photonuclear production and radiochemical separation of medically relevant radionuclides: 67Cu. J. Radioanal. Nucl. Chem. 321(1), 125 (2019).10.1007/s10967-019-06576-9Search in Google Scholar

16. Jamriska, D. S., Taylor, W., Ott, M., Heaton, R., Phillips, D., Fowler, M.: Activation rates and chemical recovery of 67Cu produced with low-energy proton irradiation of enriched 70Zn targets. J. Radioanal. Nucl. Chem. 195, 263 (1995).10.1007/BF02035965Search in Google Scholar

17. Hilgers, K., Stoll, T., Skakun, Y., Coenen, H., Qaim, S. M.: Cross section measurements of the nuclear reactions natZn(d,x)64Cu; 66Zn(d,α)64Cu and 68Zn(p,αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process. Appl. Radiat. Isot. 59, 343 (2003).10.1016/S0969-8043(03)00199-4Search in Google Scholar

18. Pupillo, G., Sounalet, T., Michel, N., Mou, L., Esposito, J., Haddad, F.: New production cross sections for the theranostic radionuclide 67Cu. Nucl. Instrum. Methods Phys. Res. Sect. B 415, 41 (2018).10.1016/j.nimb.2017.10.022Search in Google Scholar

19. IAEA, IAEA website on Therapeutic Radionuclides" [Online]. available at: https://www-nds.iaea.org/radionuclides/. [Accessed in May 2019].Search in Google Scholar

20. EXFOR, "Experimental Nuclear Reaction Data" [Online]. available at: https://www-nds.iaea.org/exfor/exfor.htm. [Accessed in May 2019].Search in Google Scholar

21. Levkovskij, V. N.: Middle mass nuclides (A=40–100) activation cross sections by medium energy (E=10–50 MeV) protons and α-particles (experiment and systematics), Inter-Vesti, Moscow (1991).Search in Google Scholar

22. Kastleiner, S., Coenen, H. H., Qaim, S. M.: Possibility of production of 67Cu at a small-sized cyclotron via the (p,α)-reaction on enriched 70Zn. Radiochim. Acta 84, 107 (1999).10.1524/ract.1999.84.2.107Search in Google Scholar

23. N. N. D. C. (NNDC), NuDat2.7 database [Online]. available at: http://www.nndc.bnl.gov/nudat2/.Search in Google Scholar

24. Koning, A., Rochman, D.: Modern nuclear data evaluation with the TALYS code system. Nucl. Data Sheets 113(12), 2841 (2012).10.1016/j.nds.2012.11.002Search in Google Scholar

25. Esposito, J., Bettoni, D., Boschi, A., Calderolla, M., Cisternino, S., Fiorentini, G., Keppel, G., Martini, P., Maggiore, M., Mou, L., Pasquali, M., Pranovi, L., Pupillo, G., Rossi Alvarez, C., Sarchiapone, L., Sciacca, G., Skliarova, H., Favaron, P., Lombardi, A., Antonini, P., Duatti, A.: LARAMED: a laboratory for radioisotopes of medical interest. Molecules 24(1), 20 (2019).10.3390/molecules24010020Search in Google Scholar PubMed PubMed Central

26. Haddad, F., Ferrer, L., Guertin, A., Carlier, T., Michel, N., Barbet, J., Chatal, J.: ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. Eur. J. Nucl. Med. Mol. Imaging 35, 1377 (2008).10.1007/s00259-008-0802-5Search in Google Scholar PubMed

27. Pupillo, G., Esposito, J., Gambaccini, M., Haddad, F., Michel, N.: Experimental cross section evaluation for innovative 99Mo production via the (α,n) reaction on 96Zr target. J. Radioanal. Nucl. Chem. 302(2), 911 (2014).10.1007/s10967-014-3321-9Search in Google Scholar

28. IAEA, "IAEA website on Monitor Reactions 2017" [Online]. available at: https://www-nds.iaea.org/medical/monitor_ reactions.html.Search in Google Scholar

29. Ziegler, J., Ziegler, M., Biersack, J., SRIM – the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect B 268, 1818 (2010).10.1016/j.nimb.2010.02.091Search in Google Scholar

30. Stoll, T., Kastleiner, S., Shubin, Y. N., Coenen, H. H., Qaim, S. M.: Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu. Radiochim. Acta 90, 309 (2002).10.1524/ract.2002.90.6.309Search in Google Scholar

31. Schwarzbach, R., Zimmermann, K., Bläuenstein, P., Smith, A., Schubiger A.: Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods. Appl. Radiat. Isot. 46(5), 329 (1995).10.1016/0969-8043(95)00010-BSearch in Google Scholar

32. Medvedev, D., Mausner, L., Meinken, G., Kurczak, S., Schnakenberg, H., Dodge, C., Korach, E., Srivastava, S.: Development of large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl. Radiat. Isot. 70, 423 (2012).10.1016/j.apradiso.2011.10.007Search in Google Scholar

33. Manenti, S., Alí Santoro, M. D. C., Cotogno, G., Duchemin, C., Haddad, F., Holzwarth, U., Groppi, F.: Excitation function and yield for the 103Rh(d,2n)103Pd nuclear reaction: optimization of the production of Palladium-103. Nucl. Med. Biol. 49, 30 (2017).10.1016/j.nucmedbio.2017.02.005Search in Google Scholar

34. Gilmore, G.: Practical gamma-ray spectrometry. 2nd ed. John Wiley & Sons Ltd, Warrington, UK (2008).10.1002/9780470861981Search in Google Scholar

35. McGee, T., Rao, C., Saha, G., Yaffe, L.: Nuclear interactions of 45Sc and 68Zn with protons of medium energy. Nucl. Phys. A 150, 11 (1970).10.1016/0375-9474(70)90451-3Search in Google Scholar

36. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Métivier, V.: Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV. Phys. Med. Biol. 60(3), 931 (2015).10.1088/0031-9155/60/3/931Search in Google Scholar PubMed

37. Qaim, S. M., Sudár, S., Scholten, B., Koning, A., Coenen, H. H.: Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl. Radiat. Isot. 85, 101 (2014).10.1016/j.apradiso.2013.10.004Search in Google Scholar PubMed

Received: 2019-08-11
Accepted: 2019-12-26
Published Online: 2020-02-12
Published in Print: 2020-08-27

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3199/html
Scroll to top button