Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access August 12, 2020

Simultaneous enhancement of strength and ductility with nano dispersoids in nano and ultrafine grain metals: a brief review

  • Yusheng Hu , Ziyun Yu , Genlian Fan EMAIL logo , Zhanqiu Tan , Jiandang Zhou , Hao Zhang , Zhiqiang Li and Di Zhang

Abstract

Grain refinement is the most universal and effective method of strengthening metallic materials, which is known as the “Hall-Petch” relationship. However, when grain size is refined to sub-micro regime (Ultrafine Grain, UFG) or even nano regime (Nano Grain, NG), the plasticity of metallic materials becomes poor. Massive studies indicate that the low strain hardening ability resulted from the enhanced dynamic recovery and lack of dislocation accumulation in fine grains is the main reason for low ductility in UFG/NG metals. To resolve this “strength-ductility” conflict, different strategies have been taken, like bimodal/multimodal structure, nanotwins, gradient structure and intragranular nano dispersoids. Among them, the introduction of nano dispersoids into the fine grains attracted lots of attention due to its wide applicability and great success in simultaneously increasing the strength and ductility of the UFG/NG metal. In addition to the enhanced mechanical performance, the introduced second-phase particle may also bring some extraordinary functional properties into the metallic material. In this paper, a brief view of the strategies to improve ductility of the UFG/NG metals and the relevant toughening mechanisms are revealed. Special attentions are paid to the utilization of intragranular nano dispersoids in Aluminum alloys.

References

[1] Valiev, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Materials, Vol. 3, No. 8, 2004, pp. 511–516.10.1038/nmat1180Search in Google Scholar

[2] Langdon, T. G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Materialia, Vol. 61, No. 19, 2013, pp. 7035–7059.10.1016/j.actamat.2013.08.018Search in Google Scholar

[3] Meyers, M. A., A. Mishra, and D. J. Benson. Mechanical properties of nanocrystalline materials. Progress in Materials Science, Vol. 51, No. 4, 2006, pp. 427–556.10.1016/j.pmatsci.2005.08.003Search in Google Scholar

[4] Ma, E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scripta Materialia, Vol. 49, No. 7, 2003, pp. 663–668.10.1016/S1359-6462(03)00396-8Search in Google Scholar

[5] Koch, C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Materialia, Vol. 49, No. 7, 2003, pp. 657–662.10.1016/S1359-6462(03)00394-4Search in Google Scholar

[6] Pande, C., R. Masumura, and R. Armstrong. Pile-up based Hall-Petch relation for nanoscale materials. Nanostructured Materials, Vol. 2, No. 3, 1993, pp. 323–331.10.1016/0965-9773(93)90159-9Search in Google Scholar

[7] Hasnaoui, A., P. Derlet, and H. Van Swygenhoven. Interaction between dislocations and grain boundaries under an indenter–a molecular dynamics simulation. Acta Materialia, Vol. 52, No. 8, 2004, pp. 2251–2258.10.1016/j.actamat.2004.01.018Search in Google Scholar

[8] Van Swygenhoven, H., P. Derlet, and A. Frøseth. Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Materialia, Vol. 54, No. 7, 2006, pp. 1975–1983.10.1016/j.actamat.2005.12.026Search in Google Scholar

[9] Benson, D. J., H.-H. Fu, and M. A. Meyers. On the effect of grain size on yield stress: Extension into nanocrystalline domain. Materials Science and Engineering A, Vol. 319, 2001, pp. 854–861.10.1016/S0921-5093(00)02029-3Search in Google Scholar

[10] Fu, H.-H., D. J. Benson, and M. A. Meyers. Analytical and computational description of effect of grain size on yield stress of metals. Acta Materialia, Vol. 49, No. 13, 2001, pp. 2567–2582.10.1016/S1359-6454(01)00062-3Search in Google Scholar

[11] Fu, H.-H., D. J. Benson, and M. A. Meyers. Computational description of nanocrystalline deformation based on crystal plasticity. Acta Materialia, Vol. 52, No. 15, 2004, pp. 4413–4425.10.1016/j.actamat.2004.05.036Search in Google Scholar

[12] Fleck, N., and J. Hutchinson. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, Vol. 41, No. 12, 1993, pp. 1825–1857.10.1016/0022-5096(93)90072-NSearch in Google Scholar

[13] Fleck, N., G. Muller, M. Ashby, and J. Hutchinson. Strain gradient plasticity: Theory and experiment. Acta Metallurgica et Materialia, Vol. 42, No. 2, 1994, pp. 475–487.10.1016/0956-7151(94)90502-9Search in Google Scholar

[14] Gao, H., Y. Huang, W. Nix, and J. Hutchinson. Mechanism-based strain gradient plasticity—I. Theory. Journal of the Mechanics and Physics of Solids, Vol. 47, No. 6, 1999, pp. 1239–1263.10.1016/S0022-5096(98)00103-3Search in Google Scholar

[15] Huang, Y., Z. Xue, H. Gao, W. Nix, and Z. Xia. A study of microindentation hardness tests by mechanism-based strain gradient plasticity. Journal of Materials Research, Vol. 15, No. 08, 2000, pp. 1786–1796.10.1557/JMR.2000.0258Search in Google Scholar

[16] Wang, Y., and E. Ma. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Materialia, Vol. 52, No. 6, 2004, pp. 1699–1709.10.1016/j.actamat.2003.12.022Search in Google Scholar

[17] Tsuji, N., Y. Ito, Y. Saito, and Y. Minamino. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Materialia, Vol. 47, No. 12, 2002, pp. 893–899.10.1016/S1359-6462(02)00282-8Search in Google Scholar

[18] Jia, D., Y. Wang, K. Ramesh, E. Ma, Y. Zhu, and R. Valiev. Deformation behavior and plastic instabilities of ultrafine-grained titanium. Applied Physics Letters, Vol. 79, No. 5, 2001, pp. 611–613.10.1063/1.1384000Search in Google Scholar

[19] Hu, C. M., C. M. Lai, X. H. Du, N. J. Ho, and J. C. Huang. Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process. Scripta Materialia, Vol. 59, No. 11, 2008, pp. 1163–1166.10.1016/j.scriptamat.2008.06.040Search in Google Scholar

[20] Hart, E. W. Theory of the tensile test. Acta Metallurgica, Vol. 15, No. 2, 1967, pp. 351–355.10.1016/0001-6160(67)90211-8Search in Google Scholar

[21] Jia, D., K. Ramesh, and E. Ma. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Materialia, Vol. 51, No. 12, 2003, pp. 3495–3509.10.1016/S1359-6454(03)00169-1Search in Google Scholar

[22] Cheng, S., E. Ma, Y. Wang, L. Kecskes, K. Youssef, C. Koch, U. Trociewitz, and K. Han. Tensile properties of in situ consolidated nanocrystalline Cu. Acta Materialia, Vol. 53, No. 5, 2005, pp. 1521–1533.10.1016/j.actamat.2004.12.005Search in Google Scholar

[23] Youssef, K. M., R. O. Scattergood, K. L. Murty, J. A. Horton, and C. C. Koch. Ultrahigh strength and high ductility of bulk nanocrystalline copper. Applied Physics Letters, Vol. 87, No. 9, 2005, p. 091904.10.1063/1.2034122Search in Google Scholar

[24] Ma, E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM, Vol. 58, No. 4, 2006, pp. 49–53.10.1007/s11837-006-0215-5Search in Google Scholar

[25] Wang, Y., M. Chen, F. Zhou, and E. Ma. High tensile ductility in a nanostructured metal. Nature, Vol. 419, No. 6910, 2002, pp. 912–915.Search in Google Scholar

[26] Zhao, Y., T. Topping, J. F. Bingert, J. J. Thornton, A. M. Dangelewicz, Y. Li, et al. High tensile ductility and strength in bulk nanostructured nickel. Advanced Materials, Vol. 20, No. 16, 2008, pp. 3028–3033.10.1002/adma.200800214Search in Google Scholar

[27] Fang, T. H., W. L. Li, N. R. Tao, and K. Lu. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science, Vol. 331, No. 6024, 2011, pp. 1587–1590.Search in Google Scholar

[28] Wu, X., P. Jiang, L. Chen, F. Yuan, and Y. T. Zhu. Extraordinary strain hardening by gradient structure. Proceedings of the National Academy of Sciences of the United States of America, Vol. 111, No. 20, 2014, pp. 7197–7201.10.1073/pnas.1324069111Search in Google Scholar PubMed PubMed Central

[29] Wu, X., P. Jiang, L. Chen, J. Zhang, F. Yuan, and Y. Zhu. Synergetic strengthening by gradient structure. Materials Research Letters, Vol. 2, No. 4, 2014, pp. 185–191.10.1080/21663831.2014.935821Search in Google Scholar

[30] Lu, L., Y. Shen, X. Chen, L. Qian, and K. Lu. Ultrahigh strength and high electrical conductivity in copper. Science, Vol. 304, No. 5669, 2004, pp. 422–426.Search in Google Scholar

[31] Shen, Y., L. Lu, Q. Lu, Z. Jin, and K. Lu. Tensile properties of copper with nano-scale twins. Scripta Materialia, Vol. 52, No. 10, 2005, pp. 989–994.10.1016/j.scriptamat.2005.01.033Search in Google Scholar

[32] Li, X., Y. Wei, L. Lu, K. Lu, and H. Gao. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, Vol. 464, No. 7290, 2010, pp. 877–880.Search in Google Scholar

[33] Yan, F., G. Liu, N. Tao, and K. Lu. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Materialia, Vol. 60, No. 3, 2012, pp. 1059–1071.10.1016/j.actamat.2011.11.009Search in Google Scholar

[34] Tao, K., H. Choo, H. Li, B. Clausen, J.-E. Jin, and Y.-K. Lee. Transformation-induced plasticity in an ultrafine-grained steel: An in situ neutron diffraction study. Applied Physics Letters, Vol. 90, No. 10, 2007, id. 101911.10.1063/1.2711758Search in Google Scholar

[35] Cheng, S., H. Choo, Y. Zhao, X.-L. Wang, Y. Zhu, Y. Wang, et al. High ductility of ultrafine-grained steel via phase transformation. Journal of Materials Research, Vol. 23, No. 06, 2008, pp. 1578–1586.10.1557/JMR.2008.0213Search in Google Scholar

[36] Ma, Y., J.-E. Jin, and Y.-K. Lee. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Materialia, Vol. 52, No. 12, 2005, pp. 1311–1315.10.1016/j.scriptamat.2005.02.018Search in Google Scholar

[37] Rösner, H., J. Markmann, and J. Weissmüller. Deformation twinning in nanocrystalline Pd. Philosophical Magazine Letters, Vol. 84, No. 5, 2004, pp. 321–334.10.1080/09500830410001675687Search in Google Scholar

[38] Dini, G., A. Najafizadeh, R. Ueji, and S. Monir-Vaghefi. Improved tensile properties of partially recrystallized submicron grained TWIP steel. Materials Letters, Vol. 64, No. 1, 2010, pp. 15–18.10.1016/j.matlet.2009.09.057Search in Google Scholar

[39] Zhao, Y.-H., X.-Z. Liao, S. Cheng, E. Ma, and Y. T. Zhu. Simultaneously increasing the ductility and strength of nanostructured alloys. Advanced Materials, Vol. 18, No. 17, 2006, pp. 2280–2283.10.1002/adma.200600310Search in Google Scholar

[40] Zan, Y. N., Y. T. Zhou, Z. Y. Liu, G. N. Ma, D. Wang, Q. Z. Wanget al. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites. Materials & Design, Vol. 166, 2019, p. 166.10.1016/j.matdes.2019.107629Search in Google Scholar

[41] Balog, M., T. Hu, P. Krizik, M.V. Castro Riglos, B.D. Saller, H. Yang et al. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Vol. 648, 2015, pp. 61-71.10.1016/j.msea.2015.09.037Search in Google Scholar

[42] Liu, G., G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nature Materials, Vol. 12, No. 4, 2013, pp. 344–350.10.1038/nmat3544Search in Google Scholar

[43] Lee, Y., J. Jin, and Y. Ma. Transformation-induced extraordinary ductility in an ultrafine-grained alloy with nanosized precipitates. Scripta Materialia, Vol. 57, No. 8, 2007, pp. 707–710.10.1016/j.scriptamat.2007.06.047Search in Google Scholar

[44] Tsuji, N., R. Ueji, Y. Minamino, and Y. Saito. A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scripta Materialia, Vol. 46, No. 4, 2002, pp. 305–310.10.1016/S1359-6462(01)01243-XSearch in Google Scholar

[45] Lee, T., C. H. Park, D. L. Lee, and C. S. Lee. Enhancing tensile properties of ultrafine-grained medium-carbon steel utilizing fine carbides. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. Vol. 528, No. 21, 2011, pp. 6558-6564.10.1016/j.msea.2011.05.007Search in Google Scholar

[46] Zhu, Z. H., K. B. Nie, K. K. Deng, and J. G. Han. Fabrication of biodegradable magnesium matrix composite with ultrafine grains and high strength by adding TiC nanoparticles to Mg-1.12Ca-0.84Zn-0.23Mn (at.%) alloy. Materials Science and Engineering C, Vol. 107, 2020, 110360–110360.10.1016/j.msec.2019.110360Search in Google Scholar

[47] Li, C., Y. Xie, D. Zhou, W. Zeng, J. Wang, J. Liang, et al. A novel way for fabricating ultrafine grained Cu-4.5 vol% Al2O3 composite with high strength and electrical conductivity. Materials Characterization, Vol. 155, 2019, id. 109775.10.1016/j.matchar.2019.06.017Search in Google Scholar

[48] Xie, Y., T. Xia, D. Zhou, Y. Luo, W. Zeng, Z. Zhang, et al. A novel nanostructure to achieve ultrahigh strength and good tensile ductility of a CoCrFeNiMn high entropy alloy. Nanoscale, Vol. 12, No. 9, 2020, pp. 5347–5352.10.1039/C9NR09512HSearch in Google Scholar

[49] Wang, X., B. Huang, L. Wang, and Y. Rong. Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Vol. 39, No. 1, 2008, pp. 1–7.10.1007/s11661-007-9366-4Search in Google Scholar

[50] Cheng, S., Y. Zhao, Y. Zhu, and E. Ma. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Materialia, Vol. 55, No. 17, 2007, pp. 5822–5832.10.1016/j.actamat.2007.06.043Search in Google Scholar

[51] Jiang, L., J. K. Li, P. M. Cheng, G. Liu, R. H. Wang, B. A. Chen, et al. Microalloying ultrafine grained Al alloys with enhanced ductility. Scientific Reports. Vol. 4, No. 1, 2014, id. 3605.10.1038/srep03605Search in Google Scholar

[52] Roy, D., S. Ghosh, A. Basumallick, and B. Basu. Preparation of Fealuminide reinforced in situ metal matrix composites by reactive hot pressing. Materials Science and Engineering A, Vol. 415, No. 1, 2006, pp. 202–206.10.1016/j.msea.2005.09.100Search in Google Scholar

[53] Tu, J., N. Wang, Y. Yang, W. Qi, F. Liu, X. Zhang, et al. Preparation and properties of TiB 2 nanoparticle reinforced copper matrix composites by in situ processing. Materials Letters, Vol. 52, No. 6, 2002, pp. 448–452.10.1016/S0167-577X(01)00442-6Search in Google Scholar

[54] Zhao, Y.-T., S.-L. Zhang, G. Chen, X.-N. Cheng, and C.-Q. Wang. In situ (Al2O3+ Al3Zr) np/Al nanocomposites synthesized by magneto-chemical melt reaction. Composites Science and Technology, Vol. 68, No. 6, 2008, pp. 1463–1470.10.1016/j.compscitech.2007.10.036Search in Google Scholar

[55] Tian, K., Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, and X. Wu. Effects of in situ generated ZrB 2 nano-particles on microstructure and tensile properties of 2024Al matrix composites. Journal of Alloys and Compounds, Vol. 594, 2014, pp. 1–6.10.1016/j.jallcom.2014.01.117Search in Google Scholar

[56] Zhang, Q., B. Xiao, Q. Wang, and Z. Ma. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system. Materials Letters, Vol. 65, No. 13, 2011, pp. 2070–2072.10.1016/j.matlet.2011.04.030Search in Google Scholar

[57] Mazahery, A., and M. Ostadshabani. Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. Journal of Composite Materials, Vol. 45, No. 24, 2011, pp. 2579–2586.10.1177/0021998311401111Search in Google Scholar

[58] Zhang, X., L. Geng, and G. Wang. Fabrication of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles by squeeze casting. Journal of Materials Processing Technology, Vol. 176, No. 1, 2006, pp. 146–151.10.1016/j.jmatprotec.2006.03.125Search in Google Scholar

[59] Prasad Reddy, A., P. Vamsi Krishna, R. Narasimha Rao, and N. V. Murthy. Silicon Carbide Reinforced Aluminium Metal Matrix Nano Composites-A Review. Materials Today: Proceedings, Vol. 4, No. 2, 2, Part A, 2017, pp. 3959–3971.10.1016/j.matpr.2017.02.296Search in Google Scholar

[60] Li, A. B., G. S. Wang, X. X. Zhang, Y. Q. Li, X. Gao, H. Sun, et al. Enhanced combination of strength and ductility in ultrafine-grained aluminum composites reinforced with high content intragranular nanoparticles. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. Vol. 745, 2019, pp. 10-19.10.1016/j.msea.2018.12.090Search in Google Scholar

[61] Zhang, Z., T. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J. M. Schoenung, and E. J. Lavernia. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scripta Materialia, Vol. 65, No. 8, 2011, pp. 652–655.10.1016/j.scriptamat.2011.06.037Search in Google Scholar

[62] Jiang, L., H. Wen, H. Yang, T. Hu, T. Topping, D. Zhang, et al. Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix. Acta Materialia, Vol. 89, 2015, pp. 327–343.10.1016/j.actamat.2015.01.062Search in Google Scholar

[63] Chawla, N., and Y.-L. Shen. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, Vol. 3, No. 6, 2001, pp. 357–370.10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-ISearch in Google Scholar

[64] Qu, S., T. Siegmund, Y. Huang, P. Wu, F. Zhang, and K. Hwang. A study of particle size effect and interface fracture in aluminum alloy composite via an extended conventional theory of mechanism-based strain-gradient plasticity. Composites Science and Technology, Vol. 65, No. 7, 2005, pp. 1244–1253.10.1016/j.compscitech.2004.12.029Search in Google Scholar

[65] Casati, R., and M. Vedani. Metal Matrix Composites Reinforced by Nano-Particles-A Review. Metals, Vol. 4, No. 1, 2014, pp. 65–83.10.3390/met4010065Search in Google Scholar

[66] Geng, R., F. Qiu, and Q.-C. Jiang. Reinforcement in Al Matrix Composites: A Review of Strengthening Behavior of Nano-Sized Particles. Advanced Engineering Materials, Vol. 20, No. 9, 2018, id. 1701089.10.1002/adem.201701089Search in Google Scholar

[67] Tu, J., W. Rong, S. Y. Guo, and Y. Yang. Dry sliding wear behavior of in situ Cu-TiB2 nanocomposites against medium carbon steel. Wear, Vol. 255, No. 7, 2003, pp. 832–835.10.1016/S0043-1648(03)00115-7Search in Google Scholar

[68] Gül, H., F. Kılıç, S. Aslan, A. Alp, and H. Akbulut. Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear, Vol. 267, No. 5, 2009, pp. 976–990.10.1016/j.wear.2008.12.022Search in Google Scholar

[69] Kireitseu, M., D. Hui, and G. Tomlinson. Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material. Composites. Part B, Engineering, Vol. 39, No. 1, 2008, pp. 128–138.10.1016/j.compositesb.2007.03.004Search in Google Scholar

[70] Yang, Y., J. Lan, and X. Li. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering A, Vol. 380, No. 1, 2004, pp. 378–383.10.1016/j.msea.2004.03.073Search in Google Scholar

[71] Kannan, C., and R. Ramanujam. Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. Journal of Advanced Research, Vol. 8, No. 4, 2017, pp. 309–319.10.1016/j.jare.2017.02.005Search in Google Scholar PubMed PubMed Central

[72] Suryanarayana, C., and N. Al-Aqeeli. Mechanically alloyed nanocomposites. Progress in Materials Science, Vol. 58, No. 4, 2013, pp. 383–502.10.1016/j.pmatsci.2012.10.001Search in Google Scholar

[73] Kai, X., Z. Li, G. Fan, Q. Guo, Z. Tan, W. Zhang, et al. Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy. Scripta Materialia, Vol. 68, No. 8, 2013, pp. 555–558.10.1016/j.scriptamat.2012.11.024Search in Google Scholar

[74] Jiang, L., Z. Li, G. Fan, L. Cao, and D. Zhang. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon, Vol. 50, No. 5, 2012, pp. 1993–1998.10.1016/j.carbon.2011.12.057Search in Google Scholar

[75] Xu, R., Z. Tan, G. Fan, G. Ji, D.-B. Xiong, Q. Guo, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Composites Part a-Applied Science and Manufacturing, Vol. 111, 2018, pp. 1-11.10.1016/j.compositesa.2018.05.012Search in Google Scholar

Received: 2020-04-01
Accepted: 2020-05-12
Published Online: 2020-08-12

© 2020 Yusheng Hu et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/rams-2020-0028/html
Scroll to top button