research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

4-Styryl­quino­lines from cyclo­condensation reactions between (2-amino­phen­yl)chalcones and 1,3-diketones: crystal structures and regiochemistry

CROSSMARK_Color_square_no_text.svg

aLaboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

Edited by A. L. Spek, Utrecht University, The Netherlands (Received 3 August 2020; accepted 4 August 2020; online 13 August 2020)

Structures are reported for two matched sets of substituted 4-styryl­quino­lines which were prepared by the formation of the heterocyclic ring in cyclo­condensation reactions between 1-(2-amino­phen­yl)-3-aryl­prop-2-en-1-ones with 1,3-dicarbonyl com­pounds. (E)-3-Acetyl-4-[2-(4-meth­oxy­phen­yl)ethen­yl]-2-methyl­quino­line, C21H19NO2, (I), (E)-3-acetyl-4-[2-(4-bromo­phen­yl)ethen­yl]-2-methyl­quino­line, C20H16BrNO, (II), and (E)-3-acetyl-2-methyl-4-{2-[4-(tri­fluoro­meth­yl)phen­yl]ethen­yl}quino­line, C21H16F3NO, (III), are isomorphous and in each structure the mol­ecules are linked by a single C—H⋯O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C—H⋯π(arene) hydrogen bond to form a chain of rings; hence, (I)–(III) are not strictly isostructural. By contrast with (I)–(III), no two of ethyl (E)-4-[2-(4-meth­oxy­phen­yl)ethen­yl]-2-methyl­quino­line-3-carboxyl­ate, C22H21NO3, (IV), ethyl (E)-4-[2-(4-bromo­phen­yl)ethen­yl]-2-methyl­quino­line-3-carboxyl­ate, C21H18BrNO2, (V), and ethyl (E)-2-methyl-4-{2-[4-(tri­fluoro­meth­yl)phen­yl]ethen­yl}quino­line-3-carboxyl­ate, C22H18F3NO2, (VI), are isomorphous. The mol­ecules of (IV) are linked by a single C—H⋯O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C—H⋯π(pyrid­yl) hydrogen bond, while that in (VI) contains two independent C—H⋯O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed.

1. Introduction

Compounds containing 2-styryl­quino­line units have attracted inter­est in recent years because of their potential as anti­cancer (El-Sayed et al., 2018[El-Sayed, M. A.-A., El-Husseiny, W. M., Abdel-Aziz, N. I., El-Azab, A. S., Abuelizz, H. A. & Abdel-Aziz, A. A.-M. (2018). J. Enzyme Inhib. Med. Chem. 33, 199-209.]), anti-HIV (Polanski et al., 2002[Polanski, J., Zouhiri, F., Jeanson, L., Desmaële, D., d'Angelo, J., Mouscadet, J. F., Gieleciak, R., Gasteiger, J. & Le Bret, M. (2002). J. Med. Chem. 45, 4647-4654.]), anti­malarial (Roberts et al., 2017[Roberts, B. F., Zheng, Y., Cleaveleand, J., Lee, S., Lee, E., Ayong, L., Yuan, Y. & Chakrabarti, D. (2017). Int. J. Parasitol. Drugs Drug Resist. 7, 120-129.]) and anti­microbial (Cieslik et al., 2012[Cieslik, W., Musiol, R., Nycz, J. E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B. & Polanski, J. (2012). Bioorg. Med. Chem. 20, 6960-6968.]) agents, as well as in the treatment of Alzheimer's dementia (Wang et al., 2015[Wang, X. Q., Xia, C. L., Chen, S. B., Tan, J. H., Ou, T. M., Huang, S. L., Li, D., Gu, L. Q. & Huang, Z. S. (2015). Eur. J. Med. Chem. 89, 349-361.]). By contrast, analogous com­pounds containing 4-styryl units have been very much less extensively investigated, probably, at least in part, because of a lack of efficient and versatile methods for their synthesis: such methods have generally been based on coupling reactions requiring the prior synthesis of halo­quino­lines or (haloalk­yl)quino­lines, combined with either harsh reaction conditions or the use of expensive heavy-metal catalysts (Omar & Hormi, 2009[Omar, W. A. E. & Hormi, O. E. O. (2009). Tetrahedron, 65, 4422-4428.]; Xia et al., 2016[Xia, H., Liu, Y., Zhao, P., Gou, S. & Wang, J. (2016). Org. Lett. 18, 1796-1799.]). However, a very straightforward synthesis of 4-styryl­quino­lines has been developed recently (Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]), in which the heterocyclic ring of the quino­line unit is built in situ using a cyclo­condensation reaction between a 2′-amino­chalcone, (A), and a 1,3-dicarbonyl com­pound (cf. Scheme 1[link]). The chalcone com­ponent in this type of cyclization is readily accessible by reaction between 2′-amino­aceto­phenone and an aromatic aldehyde, allowing incorporation of a wide variety of substituents both in the styryl portion and at the 3-position of the quino­line nucleus. We report here the mol­ecular structures and supra­molecular assembly of two matched sets, each of three related products: the 3-acetyl derivatives, com­pounds (I)–(III) (Scheme 1[link] and Figs. 1[link]–3[link][link]), where X = Me, were all obtained using pentane-2,4-dione as the dicarbonyl com­ponent, while the 3-carboeth­oxy derivatives, com­pounds (IV)–(VI) (Figs. 4[link]–6[link][link]), where X = OEt, were all obtained using ethyl 3-oxo­butano­ate (ethyl aceto­acetate). Compounds such as (I)–(III), containing an acetyl

[Scheme 1]
group, can act as useful synthetic inter­mediates, as they can undergo condensation with a further substituted aldehyde to form a chalcone substituent at the 3-position, as exemplified by com­pound (VIII) (Scheme 2[link]). Such chalcones can themselves then undergo cyclo­condensation reactions, for example, with a hydrazine, to form either a pyrazole, under basic conditions (Samshuddin et al., 2014[Samshuddin, S., Jasinski, J. P., Golen, J. A., Narayana, B., Yathirajan, H. S. & Glidewell, C. (2014). Acta Cryst. C70, 867-871.]), or a reduced pyrazole ring, under acidic conditions (Jasinski et al., 2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]), or with guanidine to form a reduced pyrimidine ring (Nayak et al., 2014[Nayak, P. S., Narayana, B., Yathirajan, H. S., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 1011-1016.]), thus giving access to a rich diversity of new 4-styryl­quinolin-3-yl heterocycles. In addition to reporting the mol­ecular and supra­molecular structures of com­pounds (I)–(VI), we also briefly consider com­pounds (VII) and (VIII) (Scheme 2[link]). These have been reported on a simple proof of constitution basis [Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes MUMZEC and MUMZIG (Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.])] but without any structure description or discussion; accordingly, we discuss here the supra­molecular assembly in these two com­pounds.
[Scheme 2]
[Figure 1]
Figure 1
The mol­ecular structure of com­pound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of com­pound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of com­pound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of com­pound (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of com­pound (V)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 6]
Figure 6
The mol­ecular structure of com­pound (VI)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2. Experimental

2.1. Synthesis and crystallization

Samples of com­pounds (I)–(VI) were prepared and crystallized following a recently published procedure (Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]).

2.2. Refinement

Crystal data, data collection and structure refinement details for com­pounds (I)–(VI) are summarized in Table 1[link]. Two low-angle reflections which had been attenuated by the beam stop [100 for (I)[link] and [\overline{1}]01 for (VI)] were omitted from the data sets before the final refinements; likewise, two bad outlier reflections (639 and 606) were removed from the data set for (IV)[link]. All H atoms were located in difference maps and subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (alkenyl, aromatic and heteroaromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. For com­pounds (VII) and (VIII), the published structures (Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]) were inverted and the atom labelling adjusted slightly in order to bring them into full conformity with com­pounds (I)–(VI) (cf. Tables 2[link] and 3[link]); the modified versions of the CIFs for (VII) and (VIII) are provided in the supporting information. Examination of the structure for (VIII) using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) showed that the unit cell contains two voids, each of volume 60 Å3 and centred at (0, [1 \over 2], 0) and ([1 \over 2], 0, [1 \over 2]), but further examination using SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) showed that these voids contained negligible electron density.

Table 1
Experimental details

Experiments were carried out at 100 K with Mo Kα radiation using a Bruker D8 Venture diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). H-atom parameters were constrained.

  (I) (II) (III)
Crystal data
Chemical formula C21H19NO2 C20H16BrNO C21H16F3NO
Mr 317.37 366.24 355.35
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
a, b, c (Å) 8.2595 (4), 6.4279 (3), 31.9064 (14) 8.0849 (3), 6.6692 (2), 31.1063 (10) 8.0822 (4), 6.6567 (4), 32.1024 (17)
α, β, γ (°) 90, 93.674 (2), 90 90, 95.005 (1), 90 90, 90.576 (2), 90
V3) 1690.47 (14) 1670.85 (10) 1727.05 (16)
Z 4 4 4
μ (mm−1) 0.08 2.46 0.11
Crystal size (mm) 0.23 × 0.16 × 0.09 0.17 × 0.11 × 0.04 0.20 × 0.08 × 0.06
 
Data collection
Tmin, Tmax 0.947, 0.993 0.810, 0.906 0.942, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 39800, 4197, 3528 38342, 3839, 3434 19648, 3959, 3363
Rint 0.051 0.034 0.032
(sin θ/λ)max−1) 0.668 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.06 0.030, 0.073, 1.03 0.041, 0.101, 1.04
No. of reflections 4197 3839 3959
No. of parameters 220 210 237
Δρmax, Δρmin (e Å−3) 0.33, −0.23 0.56, −0.76 0.28, −0.23
  (IV) (V) (VI)
Crystal data
Chemical formula C22H21NO3 C21H18BrNO2 C22H18F3NO2
Mr 347.40 396.26 385.37
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Triclinic, P[\overline{1}]
a, b, c (Å) 9.5301 (8), 10.3513 (8), 10.3621 (8) 9.5709 (6), 10.6119 (7), 18.2074 (10) 8.7465 (10), 9.9436 (11), 11.1116 (11)
α, β, γ (°) 65.374 (3), 86.583 (3), 76.376 (3) 90, 90.939 (2), 90 105.446 (4), 99.763 (4), 97.204 (4)
V3) 902.23 (13) 1849.0 (2) 903.08 (17)
Z 2 4 2
μ (mm−1) 0.09 2.24 0.11
Crystal size (mm) 0.30 × 0.12 × 0.05 0.25 × 0.18 × 0.15 0.27 × 0.20 × 0.18
 
Data collection
Tmin, Tmax 0.954, 0.996 0.595, 0.715 0.954, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 44489, 4158, 3440 54534, 4588, 4098 59876, 4491, 3692
Rint 0.053 0.041 0.042
(sin θ/λ)max−1) 0.650 0.667 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.128, 1.07 0.022, 0.056, 1.02 0.044, 0.120, 1.05
No. of reflections 4158 4588 4491
No. of parameters 238 228 255
Δρmax, Δρmin (e Å−3) 0.36, −0.21 0.35, −0.42 0.43, −0.43
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 2
Selected torsion angles (°) for com­pounds (I)–(VIII)

Compound C3—C4—C41—C42 C41—C42—C421—C422 C2—C3—C31—O31 C2—C3—C31—O32
(I) 46.40 (16) 13.78 (18) 66.18 (15)  
(II) 46.8 (3) 14.8 (3) 68.2 (2)  
(III) 49.0 (2) 13.0 (2) 69.52 (18)  
(IV) 48.8 (2) 1.2 (3) 73.7 (2) −104.85 (17)
(V) 51.4 (2) 10.6 (2) −102.56 (17) 75.88 (15)
(VI) 34.8 (2) −17.7 (2) −99.75 (16) 76.46 (15)
(VII) 51.0 (5) 2.0 (5) 71.5 (4)  
(VIII) 54.17 (19) −4.0 (2) −97.59 (15)  

Table 3
Hydrogen bonds and short intra­molecular contacts (Å, °) for com­pounds (I)–(VIII)

Cg1, Cg3, Cg4 and Cg5 represent the centroids of the N1/C2–C4/C4A/C8A, C421–C426, C311–C316 [present in (VII) only] and C331–C336 [present in (VIII) only] rings, respectively; ring 2 com­prises atoms C4A/C5–C8/C8A.

  D—H⋯A D—H H⋯A DA D—H⋯A
(I) C41—H41⋯O31i 0.95 2.41 3.2527 (15) 148
  C426—H426⋯Cg3ii 0.95 2.77 3.5252 (13) 138
(II) C41—H41⋯O31i 0.95 2.37 3.283 (2) 161
  C426—H426⋯Cg3ii 0.95 2.91 3.7071 (19) 142
(III) C41—H41⋯O31i 0.95 2.42 3.3290 (17) 161
  C426—H426⋯Cg3ii 0.95 3.00 3.7621 (15) 138
(IV) C32—H32B⋯O424iii 0.99 2.57 3.406 (2) 142
  C423—H423⋯Cg1iv 0.95 2.91 3.4894 (19) 120
(V) C423—H423⋯O31v 0.95 2.59 3.2197 (17) 124
  C426—H426⋯Cg1iv 0.95 2.74 3.5961 (16) 151
(VI) C41—H41⋯O31iv 0.95 2.54 3.4922 (18) 178
  C422—H422⋯O31iv 0.95 2.56 3.3924 (19) 146
(VII) C41—H41⋯O31vi 0.95 2.37 3.300 (5) 167
  C422—H422⋯O31vi 0.95 2.57 3.506 (4) 169
  C426—H426⋯Cg4vii 0.95 2.67 3.549 (4) 155
(VIII) C334—H334⋯O31viii 0.95 2.61 3.542 (2) 168
  C7—H7⋯Cg5ix 0.95 2.93 3.6437 (16) 133
  C422—H422⋯Cg1x 0.95 2.93 3.6300 (17) 132
Symmetry codes: (i) x, y + 1, z; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (iii) x + 1, y, z; (iv) −x + 1, −y + 1, −z + 1; (v) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (vi) x − [{1\over 2}], y, −z + [{1\over 2}]; (vii) −x + [{3\over 2}], y − [{1\over 2}], z; (viii) x − 1, y, z; (ix) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (x) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].

3. Results and discussion

In reactions between a chalcone of type (A) (Scheme 1[link]) and a symmetrical 1,3-diketone, such as pentane-2,4-dione, only a single product is possible, namely, the 3-acetyl-2-methyl­quino­line derivative, as exemplified by com­pounds (I)–(III). However, a com­parable reaction involving an unsymmetrical diketone, such as 1-phenyl­butane-1,3-dione can give two regioisomers, such as (VII), if the amino group reacts at the acetyl carbonyl group, or the alternative (IX) if the reaction occurs at the benzoyl carbonyl group. In general, reactions with this ketone lead exclusively to the 3-benzoyl-2-methyl isomers, as exemplified by (VII), rather than to the 3-acetyl-2-phenyl alternative exemplified by (IX) (Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]), which is consistent with the greater reactivity in the nucleophilic addition reaction of acetyl groups com­pared with benzoyl groups (Bürgi et al., 1974[Bürgi, H. B., Dunitz, J. D., Lehn, J. M. & Wipff, M. (1974). Tetrahedron, 30, 1563-1572.]; Katritzsky et al., 1995[Katritzsky, A. R., Meth-Cohn, O. & Rees, C. (1995). In Comprehensive Organic Functional Group Transformations. Oxford: Pergamon Press.]; Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]). Similarly, the reaction of a chalcone of type (A) with an unsymmetrical diketo com­pound, such as ethyl 3-oxo­butano­ate, can, in principle, give two types of product: reaction of the amino group at the acetyl carbonyl group leads to ethyl esters, as exemplified by com­pounds (IV)–(VI), but reaction of the amino group at the ester carbonyl group would lead to elimination of ethanol with the formation of a 2-quinolone of type (X) (Scheme 2[link]). Again, these reactions appear to lead exclusively to the esters, as exemplified by (IV)–(VI) (Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]), consistent with the greater electrophilicity of a ketonic carbonyl group com­pared with an ester carbonyl group. On the other hand, 2-aryl-4-quinolones are sometimes formed as by-products arising from an intra­molecular cyclization of the chalcone precursor.

Compounds (I)–(III), where X = Me and Y = OMe, Br or CF3, respectively (Scheme 1[link] and Figs. 1[link]–3[link][link]), all crystallize in the space group P21/c with rather similar unit-cell dimensions (Table 1[link]) and very similar mol­ecular conformations (Table 2[link]); each structure can be refined using the coordinates of one of the others as the starting point, provided due alteration is made in the substituent at atom C424 (Figs. 1[link]–3[link][link]). However, although there are short inter­molecular C—H⋯O and C—H⋯π(arene) contacts in all three com­pounds, involving the same sets of atoms (Table 3[link]), in each of com­pounds (II)[link] and (III)[link], the H⋯Cg distance is quite long and probably of marginal structural significance, whereas it can be regarded as a genuine hydrogen bond in com­pound (I)[link]. On this basis, com­pounds (I)–(III) can be regarded as isomorphous but not strictly isostructural (Acosta et al., 2009[Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92-o96.]; Blanco et al., 2012[Blanco, M. C., Palma, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o195-o198.]). However, in the com­parable series of com­pounds, i.e. (IV)–(VI), where X = OEt, although com­pounds (IV)[link] and (VI)[link] are both triclinic, in (IV)[link] the inter-axial angles are all less than 90°, but in (VI)[link] they are greater than 90°, so that these two com­pounds are far from being isomorphous. On the other hand, the third member of this group, com­pound (V)[link], is monoclinic, so there can be no close similarities within this group.

None of the mol­ecules of (I)–(VIII) exhibits any inter­nal symmetry, so that they are all conformationally chiral; in each case, the reference mol­ecule was selected as one having a positive sign for the C3—C4—C41—C42 torsion angle (Table 2[link]), although the space groups confirm that all the com­pounds have crystallized as conformational racemates.

The supra­molecular assembly of com­pounds (I)–(VI) is determined by C—H⋯O and C—H⋯π hydrogen bonds (Table 3[link]). In each of (I)–(III), mol­ecules which are related by translation are linked by a C—H⋯O hydrogen bond to form a C(6) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction. In the structure of (I)[link], this is enhanced by a C—H⋯π(arene) hydrogen bond linking mol­ecules related by the 21 screw axis along ([1 \over 2], y, [1 \over 4]) to form a chain of rings (Fig. 7[link]). However, in the structures of (II)[link] and (III)[link], the corresponding H⋯Cg and C⋯Cg distances are much longer than they are in (I)[link], so that these are possibly better regarded as short adventitious contacts rather than structurally significant hydrogen bonds.

[Figure 7]
Figure 7
Part of the crystal structure of com­pound (I)[link], showing the formation of a chain of rings along [010] built from C—H⋯O and C—H⋯π(arene) hydrogen bonds, drawn as dashed lines. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

A single C—H⋯O hydrogen bond links the mol­ecules of com­pound (IV)[link] which are related by translation into a C(13) chain running parallel to the [100] direction (Fig. 8[link]). This structure also contains a short C—H⋯π(pyrid­yl) contact, but the long H⋯Cg distance and the very small C—H⋯Cg angle indicate that this is probably not structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). By contrast, in the structure of com­pound (V)[link], it is the C—H⋯O contact which has a very small D—H⋯A angle (Table 3[link]), while a C—H⋯π(pyrid­yl) hydrogen bond links mol­ecules which are related by inversion to form a cyclic centrosymmetric dimer (Fig. 9[link]).

[Figure 8]
Figure 8
Part of the crystal structure of com­pound (IV)[link], showing the formation of a C(13) chain running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms bonded to those C atoms which are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x + 1, y, z) and (x − 1, y, z), respectively.
[Figure 9]
Figure 9
Part of the crystal structure of com­pound (V)[link], showing the formation of a centrosymmetric dimer. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms which are not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (−x + 1, −y + 1, −z + 1).

In the structure of com­pound (VI)[link], there are no C—H⋯π hydrogen bonds or short inter­molecular contacts. Instead two C—H⋯O hydrogen bonds combine to link inversion-related pairs of mol­ecules into centrosymmetric dimers. The hydrogen bonds involving atoms of type C41 form an R22(12) ring, while those involving atoms of type C422 generate an R22(18) ring (Fig. 10[link]).

[Figure 10]
Figure 10
Part of the crystal structure of com­pound (VI)[link], showing the formation of a centrosymmetric dimer. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms which are not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x + 1, −y + 1, −z + 1).

We also discuss here the supra­molecular assembly of com­pounds (VII) and (VIII), which, as noted above (§1[link], Introduction), have been reported on a simple proof of constitution basis, without discussion (Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]). The assembly in (VII) in the space group Pbcn is based upon two C—H⋯O hydrogen bonds and one C—H⋯π(arene) hydrogen bond (Table 3[link]). The two C—H⋯O hydrogen bonds link mol­ecules which are related by the a-glide plane at z = [1 \over 4] to form a C(6)C(9)[R21(7)] chain of rings running parallel to the [100] direction (Fig. 11[link]). In addition, the structure of (VII) contains a C—H⋯π(arene) hydrogen bond which links mol­ecules which are related by the b-glide plane at x = [3 \over 4] to form a chain running parallel to the [010] direction (Fig. 12[link]). The combination of the chain motifs along [100] and [010] generates a com­plex sheet lying parallel to (001) in the domain 0 < z < [1 \over 2]; a second sheet of this type, related to the first by inversion, lies in the domain [1 \over 2] < z < 1.0, but there are no direction-specific inter­actions between adjacent sheets. Even the shortest inter­molecular contacts (Table 3[link]) in chalcone (VIII) have H⋯A distances which are probably too long for these contacts to be regarded as structurally significant.

[Figure 11]
Figure 11
Part of the crystal structure of com­pound (VII), showing the formation of a C(6)C(9)[R21(7)] chain of rings running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms which are not involved in the motif shown have been omitted.
[Figure 12]
Figure 12
Part of the crystal structure of com­pound (VII), showing the formation of a chain built from C—H⋯π(arene) hydrogen bonds, drawn as dashed lines, running parallel to the [010] direction. For the sake of clarity, H atoms which are not involved in the motif shown have been omitted.

The structures of several simple 2-styryl­quino­lines have been published, including those of the unsubstituted 2-styryl­quino­line itself (Valle et al., 1986[Valle, G., Busetti, V. & Galiazzo, G. (1986). Z. Kristallogr. 177, 315-318.]), and of several analogues carrying simple substituents in the phenyl ring (Kuz'mina et al., 2012[Kuz'mina, L. G., Sitin, A. G., Gulakova, E., Fedorova, O. A., Lermontova, E. K. & Churakov, A. V. (2012). Crystallogr. Rep. 57, 85-95.]). In addition, structures have been reported for a number of salts derived from 2-styryl­quino­lines (Kobkeatthawin et al., 2008[Kobkeatthawin, T., Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o642-o643.], 2009[Kobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o76-o77.]; Chantrapromma et al., 2008[Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, S. & Fun, H.-K. (2008). Acta Cryst. E64, o876-o877.], 2014[Chantrapromma, S., Kaewmanee, N., Boonnak, N., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o395-o396.]; Fun et al., 2013[Fun, H.-K., Kaewmanee, N., Chanawanno, K., Boonnak, N. & Chantrapromma, S. (2013). Acta Cryst. E69, o1510-o1511.]). For all of these com­pounds, the styryl group was introduced into a preformed quino­line nucleus. 8-Styryl­quino­line and its 4-phenyl­styryl analogue, whose structures have also been reported (Sharma et al., 2015[Sharma, R., Kumar, R., Kumar, I. & Sharma, U. (2015). Eur. J. Org. Chem. 2015, 7519-7528.]), were pre­pared using a rhodium-catalysed coupling reaction between quino­line N-oxide and the styrene com­ponent. Despite the substantial number of structure reports involving 2-styryl­quino­lines and their derivatives, there are no reports in the CSD of 4-styryl­quino­lines other than the two examples discussed above, i.e. com­pounds (VII) and (VIII) (CSD refcodes MUMZEC and MUMZIG, respectively; Meléndez et al., 2020[Meléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804-1822.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

(E)-3-Acetyl-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline (I) top
Crystal data top
C21H19NO2F(000) = 672
Mr = 317.37Dx = 1.247 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2595 (4) ÅCell parameters from 4198 reflections
b = 6.4279 (3) Åθ = 2.5–28.3°
c = 31.9064 (14) ŵ = 0.08 mm1
β = 93.674 (2)°T = 100 K
V = 1690.47 (14) Å3Plate, yellow
Z = 40.23 × 0.16 × 0.09 mm
Data collection top
Bruker D8 Venture
diffractometer
4197 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3528 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.051
φ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.947, Tmax = 0.993k = 88
39800 measured reflectionsl = 4240
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.6947P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4197 reflectionsΔρmax = 0.33 e Å3
220 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22600 (12)0.50352 (15)0.46800 (3)0.0187 (2)
C20.35344 (13)0.40197 (17)0.45582 (3)0.0183 (2)
C30.44411 (13)0.47008 (17)0.42158 (3)0.0170 (2)
C40.39728 (13)0.64671 (17)0.39940 (3)0.0167 (2)
C4A0.25816 (13)0.75745 (17)0.41187 (3)0.0170 (2)
C50.19665 (15)0.93792 (19)0.39100 (4)0.0220 (2)
H50.24930.99150.36770.026*
C60.06173 (16)1.0358 (2)0.40417 (4)0.0256 (3)
H60.02041.15530.38960.031*
C70.01623 (15)0.9608 (2)0.43914 (4)0.0247 (3)
H70.10881.03130.44820.030*
C80.04033 (14)0.78703 (19)0.46010 (4)0.0209 (2)
H80.01270.73800.48380.025*
C8A0.17774 (13)0.67992 (17)0.44663 (3)0.0171 (2)
C210.40445 (16)0.21170 (19)0.48070 (4)0.0238 (2)
H21A0.33700.19770.50470.036*
H21B0.51850.22510.49080.036*
H21C0.39110.08830.46280.036*
C310.59731 (14)0.35584 (18)0.41244 (3)0.0203 (2)
O310.59378 (12)0.17673 (14)0.40028 (3)0.0326 (2)
C320.75319 (14)0.4693 (2)0.42241 (4)0.0245 (3)
H32A0.78110.46270.45270.037*
H32B0.74090.61500.41370.037*
H32C0.83970.40450.40730.037*
C410.48647 (13)0.72134 (18)0.36375 (3)0.0185 (2)
H410.51240.86510.36250.022*
C420.53271 (13)0.59664 (18)0.33313 (3)0.0179 (2)
H420.50190.45450.33450.021*
C4210.62670 (13)0.65888 (18)0.29759 (3)0.0176 (2)
C4220.70887 (14)0.84777 (18)0.29572 (3)0.0202 (2)
H4220.70910.94020.31900.024*
C4230.79067 (14)0.90422 (19)0.26062 (4)0.0211 (2)
H4230.84581.03380.25990.025*
C4240.79091 (14)0.76872 (19)0.22647 (3)0.0206 (2)
C4250.71394 (15)0.57636 (19)0.22835 (4)0.0226 (2)
H4250.71640.48230.20540.027*
C4260.63392 (14)0.52220 (19)0.26355 (3)0.0200 (2)
H4260.58300.39000.26470.024*
O4240.86368 (11)0.80822 (15)0.18996 (3)0.0275 (2)
C4270.93382 (16)1.0093 (2)0.18527 (4)0.0274 (3)
H47A0.85111.11630.18860.041*
H47B0.97541.02110.15730.041*
H47C1.02311.02860.20670.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0202 (5)0.0183 (5)0.0177 (4)0.0008 (4)0.0010 (3)0.0008 (4)
C20.0204 (5)0.0159 (5)0.0182 (5)0.0009 (4)0.0008 (4)0.0005 (4)
C30.0172 (5)0.0161 (5)0.0178 (5)0.0008 (4)0.0006 (4)0.0020 (4)
C40.0185 (5)0.0163 (5)0.0154 (5)0.0009 (4)0.0019 (4)0.0019 (4)
C4A0.0190 (5)0.0171 (5)0.0150 (5)0.0015 (4)0.0014 (4)0.0015 (4)
C50.0280 (6)0.0223 (6)0.0162 (5)0.0056 (5)0.0057 (4)0.0025 (4)
C60.0292 (6)0.0251 (6)0.0231 (6)0.0098 (5)0.0044 (5)0.0044 (5)
C70.0219 (6)0.0271 (6)0.0257 (6)0.0075 (5)0.0059 (4)0.0000 (5)
C80.0194 (5)0.0246 (6)0.0192 (5)0.0002 (4)0.0044 (4)0.0002 (4)
C8A0.0176 (5)0.0178 (5)0.0157 (5)0.0005 (4)0.0006 (4)0.0011 (4)
C210.0295 (6)0.0185 (5)0.0234 (6)0.0028 (5)0.0013 (5)0.0048 (4)
C310.0237 (6)0.0188 (5)0.0185 (5)0.0046 (4)0.0016 (4)0.0004 (4)
O310.0335 (5)0.0205 (4)0.0437 (6)0.0063 (4)0.0013 (4)0.0083 (4)
C320.0204 (6)0.0273 (6)0.0259 (6)0.0038 (5)0.0030 (4)0.0002 (5)
C410.0201 (5)0.0176 (5)0.0180 (5)0.0019 (4)0.0030 (4)0.0013 (4)
C420.0176 (5)0.0182 (5)0.0178 (5)0.0009 (4)0.0009 (4)0.0001 (4)
C4210.0166 (5)0.0197 (5)0.0164 (5)0.0025 (4)0.0015 (4)0.0011 (4)
C4220.0205 (5)0.0215 (6)0.0188 (5)0.0011 (4)0.0030 (4)0.0044 (4)
C4230.0205 (5)0.0211 (5)0.0220 (5)0.0023 (4)0.0032 (4)0.0025 (4)
C4240.0194 (5)0.0256 (6)0.0173 (5)0.0007 (4)0.0042 (4)0.0003 (4)
C4250.0264 (6)0.0244 (6)0.0173 (5)0.0020 (5)0.0043 (4)0.0055 (4)
C4260.0206 (5)0.0205 (5)0.0189 (5)0.0010 (4)0.0018 (4)0.0029 (4)
O4240.0341 (5)0.0297 (5)0.0199 (4)0.0070 (4)0.0109 (3)0.0027 (3)
C4270.0276 (6)0.0314 (7)0.0240 (6)0.0065 (5)0.0066 (5)0.0027 (5)
Geometric parameters (Å, º) top
N1—C21.3181 (15)C32—H32A0.9800
N1—C8A1.3692 (14)C32—H32B0.9800
C2—C31.4319 (15)C32—H32C0.9800
C2—C211.5036 (16)C41—C421.3382 (15)
C3—C41.3800 (15)C41—H410.9500
C3—C311.5076 (15)C42—C4211.4701 (15)
C4—C4A1.4296 (15)C42—H420.9500
C4—C411.4746 (15)C421—C4221.3941 (16)
C4A—C51.4157 (16)C421—C4261.4012 (15)
C4A—C8A1.4190 (15)C422—C4231.3926 (16)
C5—C61.3691 (16)C422—H4220.9500
C5—H50.9500C423—C4241.3952 (16)
C6—C71.4087 (17)C423—H4230.9500
C6—H60.9500C424—O4241.3684 (13)
C7—C81.3685 (17)C424—C4251.3934 (17)
C7—H70.9500C425—C4261.3837 (15)
C8—C8A1.4176 (15)C425—H4250.9500
C8—H80.9500C426—H4260.9500
C21—H21A0.9800O424—C4271.4282 (15)
C21—H21B0.9800C427—H47A0.9800
C21—H21C0.9800C427—H47B0.9800
C31—O311.2147 (15)C427—H47C0.9800
C31—C321.4959 (17)
C2—N1—C8A118.41 (9)C31—C32—H32A109.5
N1—C2—C3122.69 (10)C31—C32—H32B109.5
N1—C2—C21116.69 (10)H32A—C32—H32B109.5
C3—C2—C21120.59 (10)C31—C32—H32C109.5
C4—C3—C2119.97 (10)H32A—C32—H32C109.5
C4—C3—C31120.84 (10)H32B—C32—H32C109.5
C2—C3—C31119.03 (10)C42—C41—C4123.26 (11)
C3—C4—C4A118.09 (10)C42—C41—H41118.4
C3—C4—C41121.72 (10)C4—C41—H41118.4
C4A—C4—C41120.19 (10)C41—C42—C421126.13 (11)
C5—C4A—C8A118.92 (10)C41—C42—H42116.9
C5—C4A—C4123.21 (10)C421—C42—H42116.9
C8A—C4A—C4117.87 (10)C422—C421—C426117.90 (10)
C6—C5—C4A120.45 (11)C422—C421—C42123.54 (10)
C6—C5—H5119.8C426—C421—C42118.56 (10)
C4A—C5—H5119.8C423—C422—C421121.59 (10)
C5—C6—C7120.54 (11)C423—C422—H422119.2
C5—C6—H6119.7C421—C422—H422119.2
C7—C6—H6119.7C422—C423—C424119.38 (11)
C8—C7—C6120.49 (11)C422—C423—H423120.3
C8—C7—H7119.8C424—C423—H423120.3
C6—C7—H7119.8O424—C424—C425115.33 (10)
C7—C8—C8A120.20 (10)O424—C424—C423124.88 (11)
C7—C8—H8119.9C425—C424—C423119.79 (10)
C8A—C8—H8119.9C426—C425—C424120.08 (11)
N1—C8A—C8117.67 (10)C426—C425—H425120.0
N1—C8A—C4A122.96 (10)C424—C425—H425120.0
C8—C8A—C4A119.37 (10)C425—C426—C421121.18 (11)
C2—C21—H21A109.5C425—C426—H426119.4
C2—C21—H21B109.5C421—C426—H426119.4
H21A—C21—H21B109.5C424—O424—C427117.40 (9)
C2—C21—H21C109.5O424—C427—H47A109.5
H21A—C21—H21C109.5O424—C427—H47B109.5
H21B—C21—H21C109.5H47A—C427—H47B109.5
O31—C31—C32122.18 (11)O424—C427—H47C109.5
O31—C31—C3121.35 (11)H47A—C427—H47C109.5
C32—C31—C3116.30 (10)H47B—C427—H47C109.5
C8A—N1—C2—C30.77 (16)C4—C4A—C8A—N11.07 (16)
C8A—N1—C2—C21178.74 (10)C5—C4A—C8A—C81.30 (16)
N1—C2—C3—C41.17 (17)C4—C4A—C8A—C8179.38 (10)
C21—C2—C3—C4179.06 (10)C4—C3—C31—O31118.43 (13)
N1—C2—C3—C31174.26 (10)C2—C3—C31—O3166.18 (15)
C21—C2—C3—C313.63 (16)C4—C3—C31—C3266.26 (14)
C2—C3—C4—C4A0.39 (16)C2—C3—C31—C32109.13 (12)
C31—C3—C4—C4A174.96 (10)C3—C4—C41—C4246.40 (16)
C2—C3—C4—C41179.53 (10)C4A—C4—C41—C42133.52 (12)
C31—C3—C4—C415.12 (16)C4—C41—C42—C421177.66 (10)
C3—C4—C4A—C5178.64 (11)C41—C42—C421—C42213.78 (18)
C41—C4—C4A—C51.29 (17)C41—C42—C421—C426165.87 (11)
C3—C4—C4A—C8A0.65 (15)C426—C421—C422—C4232.48 (17)
C41—C4—C4A—C8A179.43 (10)C42—C421—C422—C423177.17 (11)
C8A—C4A—C5—C60.01 (18)C421—C422—C423—C4240.12 (18)
C4—C4A—C5—C6179.27 (12)C422—C423—C424—O424178.54 (11)
C4A—C5—C6—C71.2 (2)C422—C423—C424—C4251.99 (18)
C5—C6—C7—C81.0 (2)O424—C424—C425—C426178.81 (11)
C6—C7—C8—C8A0.36 (19)C423—C424—C425—C4261.68 (18)
C2—N1—C8A—C8179.91 (10)C424—C425—C426—C4210.77 (18)
C2—N1—C8A—C4A0.36 (16)C422—C421—C426—C4252.80 (17)
C7—C8—C8A—N1178.08 (11)C42—C421—C426—C425176.87 (11)
C7—C8—C8A—C4A1.49 (17)C425—C424—O424—C427175.49 (11)
C5—C4A—C8A—N1178.24 (10)C423—C424—O424—C4275.02 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41···O31i0.952.413.2527 (15)148
C426—H426···Cg3ii0.952.773.5252 (13)138
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2.
(E)-3-Acetyl-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline (II) top
Crystal data top
C20H16BrNOF(000) = 744
Mr = 366.24Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0849 (3) ÅCell parameters from 3839 reflections
b = 6.6692 (2) Åθ = 2.5–27.5°
c = 31.1063 (10) ŵ = 2.46 mm1
β = 95.005 (1)°T = 100 K
V = 1670.85 (10) Å3Plate, yellow
Z = 40.17 × 0.11 × 0.04 mm
Data collection top
Bruker D8 Venture
diffractometer
3839 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3434 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.034
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.810, Tmax = 0.906k = 88
38342 measured reflectionsl = 3940
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0294P)2 + 1.5332P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3839 reflectionsΔρmax = 0.56 e Å3
210 parametersΔρmin = 0.76 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22878 (18)0.4980 (2)0.46764 (5)0.0216 (3)
C20.3566 (2)0.4009 (2)0.45402 (5)0.0214 (3)
C30.4453 (2)0.4719 (2)0.41918 (5)0.0198 (3)
C40.3970 (2)0.6464 (2)0.39805 (5)0.0198 (3)
C4A0.2553 (2)0.7499 (2)0.41163 (5)0.0211 (3)
C50.1897 (2)0.9251 (3)0.39104 (6)0.0314 (4)
H50.24030.97880.36710.038*
C60.0535 (3)1.0184 (3)0.40534 (7)0.0358 (5)
H60.00931.13470.39090.043*
C70.0209 (2)0.9429 (3)0.44112 (6)0.0302 (4)
H70.11381.01010.45110.036*
C80.0395 (2)0.7731 (3)0.46174 (6)0.0249 (3)
H80.01100.72370.48610.030*
C8A0.1770 (2)0.6713 (2)0.44684 (5)0.0203 (3)
C210.4107 (2)0.2140 (3)0.47846 (6)0.0290 (4)
H21A0.34570.19890.50340.043*
H21B0.52880.22420.48840.043*
H21C0.39270.09720.45950.043*
C310.5978 (2)0.3597 (3)0.40803 (6)0.0248 (3)
O310.58723 (19)0.1923 (2)0.39267 (5)0.0402 (3)
C320.7612 (2)0.4597 (3)0.41940 (7)0.0315 (4)
H32A0.79150.44660.45050.047*
H32B0.75270.60210.41170.047*
H32C0.84650.39610.40350.047*
C410.4876 (2)0.7319 (3)0.36336 (5)0.0221 (3)
H410.51150.87130.36460.026*
C420.5388 (2)0.6286 (3)0.33029 (5)0.0218 (3)
H420.51010.49060.32820.026*
C4210.63654 (19)0.7121 (3)0.29676 (5)0.0223 (3)
C4220.7176 (2)0.8969 (3)0.30115 (6)0.0263 (4)
H4220.71230.97180.32700.032*
C4230.8056 (2)0.9731 (3)0.26847 (6)0.0298 (4)
H4230.86031.09890.27170.036*
C4240.8123 (2)0.8621 (3)0.23090 (6)0.0303 (4)
Br420.93043 (2)0.96822 (4)0.18577 (2)0.04244 (9)
C4250.7361 (2)0.6784 (4)0.22581 (6)0.0368 (5)
H4250.74290.60370.20000.044*
C4260.6488 (2)0.6033 (3)0.25888 (6)0.0304 (4)
H4260.59670.47580.25560.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0235 (7)0.0197 (7)0.0218 (7)0.0007 (5)0.0040 (5)0.0022 (5)
C20.0252 (8)0.0163 (7)0.0228 (8)0.0003 (6)0.0019 (6)0.0013 (6)
C30.0221 (7)0.0167 (7)0.0209 (8)0.0011 (6)0.0025 (6)0.0029 (6)
C40.0234 (7)0.0181 (7)0.0183 (7)0.0017 (6)0.0035 (6)0.0014 (6)
C4A0.0248 (8)0.0206 (8)0.0183 (7)0.0039 (6)0.0037 (6)0.0008 (6)
C50.0389 (10)0.0314 (10)0.0257 (9)0.0141 (8)0.0128 (7)0.0104 (7)
C60.0420 (11)0.0338 (10)0.0329 (10)0.0195 (9)0.0106 (8)0.0112 (8)
C70.0282 (9)0.0318 (10)0.0317 (9)0.0111 (7)0.0095 (7)0.0020 (8)
C80.0243 (8)0.0280 (9)0.0231 (8)0.0017 (7)0.0068 (6)0.0004 (7)
C8A0.0220 (7)0.0196 (8)0.0193 (7)0.0005 (6)0.0024 (6)0.0001 (6)
C210.0359 (9)0.0205 (8)0.0312 (9)0.0040 (7)0.0066 (7)0.0076 (7)
C310.0309 (9)0.0193 (8)0.0250 (8)0.0067 (7)0.0076 (7)0.0026 (6)
O310.0482 (8)0.0202 (7)0.0543 (9)0.0054 (6)0.0170 (7)0.0086 (6)
C320.0252 (9)0.0346 (10)0.0351 (10)0.0085 (7)0.0041 (7)0.0015 (8)
C410.0259 (8)0.0195 (8)0.0215 (8)0.0035 (6)0.0058 (6)0.0022 (6)
C420.0205 (7)0.0239 (8)0.0212 (8)0.0009 (6)0.0025 (6)0.0013 (6)
C4210.0182 (7)0.0305 (9)0.0184 (8)0.0026 (6)0.0026 (6)0.0014 (6)
C4220.0247 (8)0.0319 (9)0.0227 (8)0.0003 (7)0.0046 (6)0.0039 (7)
C4230.0253 (8)0.0352 (10)0.0295 (9)0.0019 (7)0.0059 (7)0.0019 (8)
C4240.0198 (8)0.0518 (12)0.0200 (8)0.0001 (8)0.0054 (6)0.0042 (8)
Br420.03101 (11)0.07124 (17)0.02652 (11)0.00315 (9)0.01070 (8)0.01007 (9)
C4250.0309 (9)0.0599 (14)0.0205 (9)0.0071 (9)0.0063 (7)0.0119 (9)
C4260.0267 (8)0.0405 (11)0.0246 (9)0.0067 (8)0.0053 (7)0.0100 (8)
Geometric parameters (Å, º) top
N1—C21.321 (2)C31—O311.214 (2)
N1—C8A1.372 (2)C31—C321.495 (3)
C2—C31.431 (2)C32—H32A0.9800
C2—C211.505 (2)C32—H32B0.9800
C3—C41.377 (2)C32—H32C0.9800
C3—C311.509 (2)C41—C421.334 (2)
C4—C4A1.432 (2)C41—H410.9500
C4—C411.471 (2)C42—C4211.472 (2)
C4A—C8A1.413 (2)C42—H420.9500
C4A—C51.413 (2)C421—C4261.395 (2)
C5—C61.372 (3)C421—C4221.397 (3)
C5—H50.9500C422—C4231.387 (3)
C6—C71.404 (3)C422—H4220.9500
C6—H60.9500C423—C4241.388 (3)
C7—C81.371 (3)C423—H4230.9500
C7—H70.9500C424—C4251.375 (3)
C8—C8A1.415 (2)C424—Br421.9018 (17)
C8—H80.9500C425—C4261.390 (3)
C21—H21A0.9800C425—H4250.9500
C21—H21B0.9800C426—H4260.9500
C21—H21C0.9800
C2—N1—C8A118.51 (14)O31—C31—C32122.29 (16)
N1—C2—C3122.57 (15)O31—C31—C3121.02 (17)
N1—C2—C21116.44 (15)C32—C31—C3116.59 (15)
C3—C2—C21120.94 (15)C31—C32—H32A109.5
C4—C3—C2120.10 (15)C31—C32—H32B109.5
C4—C3—C31120.88 (15)H32A—C32—H32B109.5
C2—C3—C31118.92 (14)C31—C32—H32C109.5
C3—C4—C4A117.88 (15)H32A—C32—H32C109.5
C3—C4—C41122.63 (14)H32B—C32—H32C109.5
C4A—C4—C41119.47 (14)C42—C41—C4125.02 (16)
C8A—C4A—C5118.84 (15)C42—C41—H41117.5
C8A—C4A—C4118.27 (15)C4—C41—H41117.5
C5—C4A—C4122.89 (15)C41—C42—C421124.98 (16)
C6—C5—C4A120.53 (17)C41—C42—H42117.5
C6—C5—H5119.7C421—C42—H42117.5
C4A—C5—H5119.7C426—C421—C422118.32 (16)
C5—C6—C7120.41 (17)C426—C421—C42118.94 (16)
C5—C6—H6119.8C422—C421—C42122.74 (15)
C7—C6—H6119.8C423—C422—C421121.18 (17)
C8—C7—C6120.49 (16)C423—C422—H422119.4
C8—C7—H7119.8C421—C422—H422119.4
C6—C7—H7119.8C422—C423—C424118.80 (18)
C7—C8—C8A120.09 (16)C422—C423—H423120.6
C7—C8—H8120.0C424—C423—H423120.6
C8A—C8—H8120.0C425—C424—C423121.48 (17)
N1—C8A—C4A122.63 (15)C425—C424—Br42119.71 (14)
N1—C8A—C8117.77 (15)C423—C424—Br42118.81 (15)
C4A—C8A—C8119.59 (15)C424—C425—C426119.16 (17)
C2—C21—H21A109.5C424—C425—H425120.4
C2—C21—H21B109.5C426—C425—H425120.4
H21A—C21—H21B109.5C425—C426—C421121.04 (18)
C2—C21—H21C109.5C425—C426—H426119.5
H21A—C21—H21C109.5C421—C426—H426119.5
H21B—C21—H21C109.5
C8A—N1—C2—C31.5 (2)C5—C4A—C8A—C82.4 (2)
C8A—N1—C2—C21178.81 (15)C4—C4A—C8A—C8178.33 (15)
N1—C2—C3—C40.9 (3)C7—C8—C8A—N1177.65 (16)
C21—C2—C3—C4178.04 (16)C7—C8—C8A—C4A2.3 (3)
N1—C2—C3—C31175.33 (15)C4—C3—C31—O31115.6 (2)
C21—C2—C3—C311.8 (2)C2—C3—C31—O3168.2 (2)
C2—C3—C4—C4A1.1 (2)C4—C3—C31—C3268.1 (2)
C31—C3—C4—C4A177.20 (15)C2—C3—C31—C32108.09 (18)
C2—C3—C4—C41177.13 (15)C3—C4—C41—C4246.8 (3)
C31—C3—C4—C411.0 (2)C4A—C4—C41—C42135.02 (18)
C3—C4—C4A—C8A2.2 (2)C4—C41—C42—C421176.86 (15)
C41—C4—C4A—C8A176.01 (15)C41—C42—C421—C426165.04 (17)
C3—C4—C4A—C5176.96 (17)C41—C42—C421—C42214.8 (3)
C41—C4—C4A—C54.8 (3)C426—C421—C422—C4231.2 (3)
C8A—C4A—C5—C60.7 (3)C42—C421—C422—C423178.57 (16)
C4—C4A—C5—C6179.93 (19)C421—C422—C423—C4240.0 (3)
C4A—C5—C6—C71.1 (3)C422—C423—C424—C4251.0 (3)
C5—C6—C7—C81.2 (3)C422—C423—C424—Br42179.13 (14)
C6—C7—C8—C8A0.5 (3)C423—C424—C425—C4260.7 (3)
C2—N1—C8A—C4A0.2 (2)Br42—C424—C425—C426179.40 (15)
C2—N1—C8A—C8179.77 (15)C424—C425—C426—C4210.6 (3)
C5—C4A—C8A—N1177.56 (16)C422—C421—C426—C4251.5 (3)
C4—C4A—C8A—N11.7 (2)C42—C421—C426—C425178.30 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41···O31i0.952.373.283 (2)161
C426—H426···Cg3ii0.952.913.7071 (19)142
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2.
(E)-3-Acetyl-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline (III) top
Crystal data top
C21H16F3NOF(000) = 736
Mr = 355.35Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0822 (4) ÅCell parameters from 3961 reflections
b = 6.6567 (4) Åθ = 2.5–27.5°
c = 32.1024 (17) ŵ = 0.11 mm1
β = 90.576 (2)°T = 100 K
V = 1727.05 (16) Å3Needle, colourless
Z = 40.20 × 0.08 × 0.06 mm
Data collection top
Bruker D8 Venture
diffractometer
3959 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3363 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.032
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.942, Tmax = 0.994k = 88
19648 measured reflectionsl = 4140
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.039P)2 + 0.8719P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3959 reflectionsΔρmax = 0.28 e Å3
237 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24277 (14)0.49703 (17)0.46953 (3)0.0222 (2)
C20.37353 (17)0.40329 (19)0.45511 (4)0.0214 (3)
C30.46663 (16)0.47574 (19)0.42048 (4)0.0198 (3)
C40.41905 (16)0.65014 (19)0.40063 (4)0.0200 (3)
C4A0.27453 (17)0.7513 (2)0.41515 (4)0.0213 (3)
C50.2095 (2)0.9254 (2)0.39603 (5)0.0312 (3)
H50.26390.98190.37270.037*
C60.0690 (2)1.0136 (3)0.41073 (5)0.0382 (4)
H60.02511.12910.39720.046*
C70.01102 (19)0.9344 (2)0.44580 (5)0.0334 (3)
H70.10750.99820.45610.040*
C80.04868 (17)0.7666 (2)0.46520 (4)0.0263 (3)
H80.00560.71500.48900.032*
C8A0.19136 (16)0.6693 (2)0.44989 (4)0.0207 (3)
C210.42652 (19)0.2158 (2)0.47786 (5)0.0287 (3)
H21A0.36090.20070.50320.043*
H21B0.54400.22580.48540.043*
H21C0.40910.09880.45980.043*
C310.62124 (18)0.3660 (2)0.40773 (4)0.0248 (3)
O310.61447 (15)0.20068 (16)0.39209 (4)0.0390 (3)
C320.78127 (18)0.4677 (2)0.41812 (5)0.0320 (3)
H32A0.80210.45910.44820.048*
H32B0.77520.60920.40980.048*
H32C0.87140.40160.40320.048*
C410.50967 (16)0.7346 (2)0.36505 (4)0.0218 (3)
H410.53750.87320.36590.026*
C420.55522 (16)0.6296 (2)0.33171 (4)0.0207 (3)
H420.52790.49080.33110.025*
C4210.64460 (15)0.7119 (2)0.29577 (4)0.0203 (3)
C4220.72004 (17)0.9002 (2)0.29629 (4)0.0245 (3)
H4220.71690.97960.32090.029*
C4230.79950 (17)0.9730 (2)0.26140 (4)0.0258 (3)
H4230.84961.10210.26210.031*
C4240.80597 (16)0.8576 (2)0.22548 (4)0.0236 (3)
C4250.73412 (18)0.6685 (2)0.22450 (4)0.0280 (3)
H4250.73950.58870.20000.034*
C4260.65429 (17)0.5967 (2)0.25951 (4)0.0255 (3)
H4260.60540.46690.25880.031*
C4270.89461 (18)0.9343 (2)0.18789 (4)0.0284 (3)
F4711.04888 (11)0.85971 (18)0.18484 (3)0.0461 (3)
F4720.90958 (14)1.13364 (15)0.18753 (3)0.0461 (3)
F4730.81762 (11)0.88303 (14)0.15231 (2)0.0328 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0276 (6)0.0200 (6)0.0190 (5)0.0029 (4)0.0008 (4)0.0013 (4)
C20.0292 (7)0.0162 (6)0.0187 (6)0.0027 (5)0.0015 (5)0.0002 (5)
C30.0263 (6)0.0155 (6)0.0177 (6)0.0003 (5)0.0004 (5)0.0025 (5)
C40.0265 (6)0.0176 (6)0.0161 (6)0.0001 (5)0.0010 (5)0.0021 (5)
C4A0.0284 (7)0.0190 (6)0.0165 (6)0.0021 (5)0.0020 (5)0.0003 (5)
C50.0418 (8)0.0288 (8)0.0234 (7)0.0117 (6)0.0097 (6)0.0084 (6)
C60.0478 (9)0.0338 (9)0.0331 (8)0.0201 (7)0.0104 (7)0.0105 (7)
C70.0337 (8)0.0350 (8)0.0315 (8)0.0112 (7)0.0099 (6)0.0015 (7)
C80.0280 (7)0.0284 (7)0.0226 (7)0.0001 (6)0.0058 (5)0.0013 (6)
C8A0.0253 (6)0.0202 (6)0.0166 (6)0.0006 (5)0.0001 (5)0.0006 (5)
C210.0404 (8)0.0206 (7)0.0250 (7)0.0020 (6)0.0012 (6)0.0056 (6)
C310.0356 (7)0.0189 (7)0.0199 (6)0.0066 (6)0.0038 (5)0.0025 (5)
O310.0541 (7)0.0205 (5)0.0426 (7)0.0076 (5)0.0088 (5)0.0074 (5)
C320.0281 (7)0.0367 (8)0.0311 (8)0.0088 (6)0.0020 (6)0.0001 (7)
C410.0267 (6)0.0177 (6)0.0210 (6)0.0024 (5)0.0029 (5)0.0013 (5)
C420.0225 (6)0.0198 (6)0.0200 (6)0.0003 (5)0.0007 (5)0.0004 (5)
C4210.0191 (6)0.0234 (7)0.0185 (6)0.0024 (5)0.0006 (5)0.0004 (5)
C4220.0270 (7)0.0262 (7)0.0202 (7)0.0020 (5)0.0031 (5)0.0047 (5)
C4230.0265 (7)0.0253 (7)0.0256 (7)0.0042 (5)0.0023 (5)0.0005 (6)
C4240.0215 (6)0.0302 (7)0.0193 (6)0.0008 (5)0.0015 (5)0.0024 (6)
C4250.0333 (7)0.0326 (8)0.0182 (7)0.0035 (6)0.0038 (5)0.0052 (6)
C4260.0293 (7)0.0250 (7)0.0224 (7)0.0039 (6)0.0033 (5)0.0031 (6)
C4270.0276 (7)0.0349 (8)0.0226 (7)0.0008 (6)0.0027 (5)0.0038 (6)
F4710.0250 (4)0.0760 (8)0.0377 (5)0.0060 (5)0.0088 (4)0.0219 (5)
F4720.0679 (7)0.0365 (5)0.0341 (5)0.0151 (5)0.0131 (5)0.0051 (4)
F4730.0361 (5)0.0443 (5)0.0182 (4)0.0004 (4)0.0018 (3)0.0027 (4)
Geometric parameters (Å, º) top
N1—C21.3154 (18)C31—C321.495 (2)
N1—C8A1.3710 (17)C32—H32A0.9800
C2—C31.4324 (18)C32—H32B0.9800
C2—C211.5062 (18)C32—H32C0.9800
C3—C41.3772 (18)C41—C421.3335 (18)
C3—C311.5077 (18)C41—H410.9500
C4—C4A1.4304 (18)C42—C4211.4729 (18)
C4—C411.4746 (18)C42—H420.9500
C4A—C51.4102 (19)C421—C4221.3942 (19)
C4A—C8A1.4175 (18)C421—C4261.3969 (19)
C5—C61.367 (2)C422—C4231.3843 (19)
C5—H50.9500C422—H4220.9500
C6—C71.407 (2)C423—C4241.387 (2)
C6—H60.9500C423—H4230.9500
C7—C81.365 (2)C424—C4251.386 (2)
C7—H70.9500C424—C4271.4991 (19)
C8—C8A1.4151 (19)C425—C4261.3866 (19)
C8—H80.9500C425—H4250.9500
C21—H21A0.9800C426—H4260.9500
C21—H21B0.9800C427—F4721.3326 (18)
C21—H21C0.9800C427—F4731.3392 (17)
C31—O311.2105 (18)C427—F4711.3465 (17)
C2—N1—C8A118.41 (11)C31—C32—H32A109.5
N1—C2—C3122.93 (12)C31—C32—H32B109.5
N1—C2—C21116.62 (12)H32A—C32—H32B109.5
C3—C2—C21120.42 (12)C31—C32—H32C109.5
C4—C3—C2119.77 (12)H32A—C32—H32C109.5
C4—C3—C31120.76 (12)H32B—C32—H32C109.5
C2—C3—C31119.39 (12)C42—C41—C4124.41 (12)
C3—C4—C4A118.13 (12)C42—C41—H41117.8
C3—C4—C41122.77 (12)C4—C41—H41117.8
C4A—C4—C41119.10 (12)C41—C42—C421125.11 (13)
C5—C4A—C8A118.78 (12)C41—C42—H42117.4
C5—C4A—C4123.17 (12)C421—C42—H42117.4
C8A—C4A—C4118.04 (12)C422—C421—C426118.39 (12)
C6—C5—C4A120.67 (14)C422—C421—C42122.90 (12)
C6—C5—H5119.7C426—C421—C42118.72 (12)
C4A—C5—H5119.7C423—C422—C421120.76 (13)
C5—C6—C7120.36 (14)C423—C422—H422119.6
C5—C6—H6119.8C421—C422—H422119.6
C7—C6—H6119.8C422—C423—C424120.03 (13)
C8—C7—C6120.60 (14)C422—C423—H423120.0
C8—C7—H7119.7C424—C423—H423120.0
C6—C7—H7119.7C425—C424—C423120.15 (13)
C7—C8—C8A120.11 (13)C425—C424—C427119.64 (13)
C7—C8—H8119.9C423—C424—C427120.19 (13)
C8A—C8—H8119.9C424—C425—C426119.55 (13)
N1—C8A—C8117.86 (12)C424—C425—H425120.2
N1—C8A—C4A122.69 (12)C426—C425—H425120.2
C8—C8A—C4A119.44 (12)C425—C426—C421121.10 (13)
C2—C21—H21A109.5C425—C426—H426119.5
C2—C21—H21B109.5C421—C426—H426119.5
H21A—C21—H21B109.5F472—C427—F473106.72 (12)
C2—C21—H21C109.5F472—C427—F471106.39 (13)
H21A—C21—H21C109.5F473—C427—F471105.47 (12)
H21B—C21—H21C109.5F472—C427—C424112.97 (13)
O31—C31—C32122.68 (14)F473—C427—C424112.21 (12)
O31—C31—C3121.26 (14)F471—C427—C424112.54 (12)
C32—C31—C3115.94 (12)
C8A—N1—C2—C31.51 (19)C4—C4A—C8A—C8179.55 (12)
C8A—N1—C2—C21179.47 (12)C4—C3—C31—O31113.91 (16)
N1—C2—C3—C40.5 (2)C2—C3—C31—O3169.52 (18)
C21—C2—C3—C4178.38 (12)C4—C3—C31—C3269.90 (17)
N1—C2—C3—C31176.10 (12)C2—C3—C31—C32106.67 (15)
C21—C2—C3—C311.78 (19)C3—C4—C41—C4249.0 (2)
C2—C3—C4—C4A1.18 (19)C4A—C4—C41—C42130.33 (14)
C31—C3—C4—C4A177.74 (12)C4—C41—C42—C421179.51 (12)
C2—C3—C4—C41179.44 (12)C41—C42—C421—C42213.0 (2)
C31—C3—C4—C412.9 (2)C41—C42—C421—C426166.89 (13)
C3—C4—C4A—C5176.83 (13)C426—C421—C422—C4231.4 (2)
C41—C4—C4A—C52.6 (2)C42—C421—C422—C423178.54 (13)
C3—C4—C4A—C8A1.77 (19)C421—C422—C423—C4240.5 (2)
C41—C4—C4A—C8A178.83 (12)C422—C423—C424—C4250.5 (2)
C8A—C4A—C5—C60.1 (2)C422—C423—C424—C427178.86 (13)
C4—C4A—C5—C6178.67 (15)C423—C424—C425—C4260.7 (2)
C4A—C5—C6—C71.4 (3)C427—C424—C425—C426179.06 (13)
C5—C6—C7—C81.1 (3)C424—C425—C426—C4210.2 (2)
C6—C7—C8—C8A0.6 (2)C422—C421—C426—C4251.2 (2)
C2—N1—C8A—C8178.81 (12)C42—C421—C426—C425178.73 (13)
C2—N1—C8A—C4A0.84 (19)C425—C424—C427—F472159.37 (13)
C7—C8—C8A—N1177.60 (14)C423—C424—C427—F47222.27 (19)
C7—C8—C8A—C4A2.1 (2)C425—C424—C427—F47338.67 (19)
C5—C4A—C8A—N1177.86 (13)C423—C424—C427—F473142.98 (13)
C4—C4A—C8A—N10.8 (2)C425—C424—C427—F47180.11 (17)
C5—C4A—C8A—C81.8 (2)C423—C424—C427—F47198.24 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41···O31i0.952.423.3290 (17)161
C426—H426···Cg3ii0.953.003.7621 (15)138
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2.
Ethyl (E)-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline-3-carboxylate (IV) top
Crystal data top
C22H21NO3Z = 2
Mr = 347.40F(000) = 368
Triclinic, P1Dx = 1.279 Mg m3
a = 9.5301 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3513 (8) ÅCell parameters from 4158 reflections
c = 10.3621 (8) Åθ = 2.2–27.5°
α = 65.374 (3)°µ = 0.09 mm1
β = 86.583 (3)°T = 100 K
γ = 76.376 (3)°Needle, yellow
V = 902.23 (13) Å30.30 × 0.12 × 0.05 mm
Data collection top
Bruker D8 Venture
diffractometer
4158 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3440 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.053
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.954, Tmax = 0.996k = 1313
44489 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.7299P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4158 reflectionsΔρmax = 0.36 e Å3
238 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.81102 (16)0.42663 (16)0.95018 (15)0.0239 (3)
C20.81545 (18)0.31117 (19)0.92506 (17)0.0228 (3)
C30.70247 (18)0.30251 (18)0.84572 (17)0.0206 (3)
C40.58290 (17)0.41582 (18)0.79378 (16)0.0199 (3)
C4A0.57445 (18)0.53964 (18)0.82549 (16)0.0204 (3)
C50.45312 (19)0.65895 (18)0.78548 (17)0.0242 (4)
H50.37270.65880.73560.029*
C60.4503 (2)0.77485 (19)0.81796 (19)0.0291 (4)
H60.36830.85480.79010.035*
C70.5683 (2)0.7762 (2)0.89237 (18)0.0294 (4)
H70.56590.85760.91360.035*
C80.6858 (2)0.6619 (2)0.93411 (18)0.0272 (4)
H80.76470.66390.98460.033*
C8A0.69172 (18)0.53980 (19)0.90306 (16)0.0221 (3)
C210.94750 (19)0.1883 (2)0.9796 (2)0.0312 (4)
H21A0.92060.10201.05310.047*
H21B1.01820.21761.02020.047*
H21C0.98990.16490.90120.047*
C310.72030 (17)0.16500 (19)0.82311 (18)0.0221 (3)
O310.70662 (14)0.05033 (13)0.91571 (13)0.0296 (3)
O320.75597 (14)0.18596 (14)0.69062 (13)0.0286 (3)
C320.7718 (2)0.0610 (2)0.6539 (2)0.0325 (4)
H32A0.80040.03120.74020.039*
H32B0.84860.06330.58480.039*
C330.6316 (2)0.0661 (2)0.59060 (19)0.0317 (4)
H33A0.60020.16020.50890.048*
H33B0.55790.05480.66210.048*
H33C0.64530.01320.55950.048*
C410.46640 (17)0.41644 (18)0.70556 (17)0.0204 (3)
H410.43530.50120.62020.024*
C420.40176 (17)0.30632 (18)0.73726 (17)0.0203 (3)
H420.43150.22410.82490.024*
C4210.28969 (17)0.29870 (18)0.65120 (16)0.0193 (3)
C4220.23677 (18)0.40931 (19)0.51900 (17)0.0230 (3)
H4220.26880.49760.48460.028*
C4230.13813 (18)0.3931 (2)0.43659 (18)0.0251 (4)
H4230.10300.46980.34690.030*
C4240.09112 (18)0.2639 (2)0.48622 (18)0.0242 (4)
C4250.13894 (19)0.1541 (2)0.61989 (19)0.0269 (4)
H4250.10460.06710.65520.032*
C4260.23657 (18)0.17209 (18)0.70116 (18)0.0232 (3)
H4260.26810.09700.79260.028*
O4240.00165 (14)0.23441 (16)0.41192 (13)0.0334 (3)
C4270.0515 (2)0.3436 (2)0.2731 (2)0.0355 (5)
H47A0.03160.36800.21550.053*
H47B0.11050.43130.28070.053*
H47C0.10980.30610.22800.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0264 (7)0.0304 (8)0.0188 (7)0.0121 (6)0.0007 (5)0.0107 (6)
C20.0238 (8)0.0285 (9)0.0175 (8)0.0093 (7)0.0003 (6)0.0090 (7)
C30.0237 (8)0.0236 (8)0.0176 (7)0.0087 (6)0.0008 (6)0.0097 (6)
C40.0241 (8)0.0232 (8)0.0143 (7)0.0107 (6)0.0011 (6)0.0070 (6)
C4A0.0260 (8)0.0222 (8)0.0147 (7)0.0110 (6)0.0035 (6)0.0068 (6)
C50.0306 (9)0.0222 (8)0.0178 (8)0.0088 (7)0.0010 (6)0.0050 (6)
C60.0412 (10)0.0209 (9)0.0224 (8)0.0072 (7)0.0024 (7)0.0064 (7)
C70.0494 (11)0.0226 (9)0.0206 (8)0.0154 (8)0.0057 (7)0.0100 (7)
C80.0395 (10)0.0307 (9)0.0177 (8)0.0193 (8)0.0031 (7)0.0106 (7)
C8A0.0289 (9)0.0263 (8)0.0142 (7)0.0132 (7)0.0036 (6)0.0082 (6)
C210.0248 (9)0.0369 (10)0.0346 (10)0.0043 (8)0.0078 (7)0.0179 (8)
C310.0176 (7)0.0263 (9)0.0246 (8)0.0047 (6)0.0033 (6)0.0125 (7)
O310.0380 (7)0.0229 (6)0.0270 (7)0.0067 (5)0.0055 (5)0.0087 (5)
O320.0323 (7)0.0346 (7)0.0294 (7)0.0138 (6)0.0065 (5)0.0208 (6)
C320.0321 (10)0.0394 (11)0.0409 (11)0.0128 (8)0.0086 (8)0.0297 (9)
C330.0440 (11)0.0314 (10)0.0246 (9)0.0154 (8)0.0012 (8)0.0126 (8)
C410.0221 (8)0.0227 (8)0.0161 (7)0.0040 (6)0.0029 (6)0.0079 (6)
C420.0205 (8)0.0231 (8)0.0168 (7)0.0031 (6)0.0021 (6)0.0086 (6)
C4210.0187 (7)0.0231 (8)0.0180 (7)0.0043 (6)0.0005 (6)0.0104 (6)
C4220.0250 (8)0.0256 (9)0.0188 (8)0.0090 (7)0.0002 (6)0.0078 (7)
C4230.0235 (8)0.0317 (9)0.0180 (8)0.0059 (7)0.0025 (6)0.0082 (7)
C4240.0186 (8)0.0366 (10)0.0221 (8)0.0085 (7)0.0007 (6)0.0155 (7)
C4250.0264 (9)0.0286 (9)0.0276 (9)0.0117 (7)0.0020 (7)0.0103 (7)
C4260.0235 (8)0.0234 (8)0.0204 (8)0.0055 (7)0.0033 (6)0.0064 (7)
O4240.0319 (7)0.0486 (8)0.0252 (7)0.0185 (6)0.0057 (5)0.0150 (6)
C4270.0259 (9)0.0599 (13)0.0257 (9)0.0122 (9)0.0055 (7)0.0205 (9)
Geometric parameters (Å, º) top
N1—C21.316 (2)C32—H32A0.9900
N1—C8A1.366 (2)C32—H32B0.9900
C2—C31.434 (2)C33—H33A0.9800
C2—C211.501 (2)C33—H33B0.9800
C3—C41.372 (2)C33—H33C0.9800
C3—C311.506 (2)C41—C421.335 (2)
C4—C4A1.434 (2)C41—H410.9500
C4—C411.477 (2)C42—C4211.468 (2)
C4A—C51.411 (2)C42—H420.9500
C4A—C8A1.416 (2)C421—C4221.395 (2)
C5—C61.369 (2)C421—C4261.399 (2)
C5—H50.9500C422—C4231.389 (2)
C6—C71.407 (3)C422—H4220.9500
C6—H60.9500C423—C4241.391 (2)
C7—C81.359 (3)C423—H4230.9500
C7—H70.9500C424—O4241.3682 (19)
C8—C8A1.417 (2)C424—C4251.392 (2)
C8—H80.9500C425—C4261.384 (2)
C21—H21A0.9800C425—H4250.9500
C21—H21B0.9800C426—H4260.9500
C21—H21C0.9800O424—C4271.430 (2)
C31—O311.206 (2)C427—H47A0.9800
C31—O321.334 (2)C427—H47B0.9800
O32—C321.467 (2)C427—H47C0.9800
C32—C331.503 (3)
C2—N1—C8A118.47 (14)O32—C32—H32B109.6
N1—C2—C3122.42 (16)C33—C32—H32B109.6
N1—C2—C21117.03 (15)H32A—C32—H32B108.2
C3—C2—C21120.52 (15)C32—C33—H33A109.5
C4—C3—C2120.55 (15)C32—C33—H33B109.5
C4—C3—C31121.94 (14)H33A—C33—H33B109.5
C2—C3—C31117.51 (15)C32—C33—H33C109.5
C3—C4—C4A117.41 (14)H33A—C33—H33C109.5
C3—C4—C41123.09 (14)H33B—C33—H33C109.5
C4A—C4—C41119.49 (15)C42—C41—C4124.64 (15)
C5—C4A—C8A118.99 (15)C42—C41—H41117.7
C5—C4A—C4122.73 (15)C4—C41—H41117.7
C8A—C4A—C4118.26 (15)C41—C42—C421126.96 (15)
C6—C5—C4A120.54 (16)C41—C42—H42116.5
C6—C5—H5119.7C421—C42—H42116.5
C4A—C5—H5119.7C422—C421—C426117.94 (14)
C5—C6—C7120.35 (17)C422—C421—C42123.34 (15)
C5—C6—H6119.8C426—C421—C42118.68 (14)
C7—C6—H6119.8C423—C422—C421121.39 (16)
C8—C7—C6120.45 (16)C423—C422—H422119.3
C8—C7—H7119.8C421—C422—H422119.3
C6—C7—H7119.8C422—C423—C424119.57 (16)
C7—C8—C8A120.61 (16)C422—C423—H423120.2
C7—C8—H8119.7C424—C423—H423120.2
C8A—C8—H8119.7O424—C424—C423124.44 (16)
N1—C8A—C4A122.83 (15)O424—C424—C425115.64 (16)
N1—C8A—C8118.15 (15)C423—C424—C425119.92 (15)
C4A—C8A—C8119.02 (16)C426—C425—C424119.84 (16)
C2—C21—H21A109.5C426—C425—H425120.1
C2—C21—H21B109.5C424—C425—H425120.1
H21A—C21—H21B109.5C425—C426—C421121.25 (16)
C2—C21—H21C109.5C425—C426—H426119.4
H21A—C21—H21C109.5C421—C426—H426119.4
H21B—C21—H21C109.5C424—O424—C427117.37 (15)
O31—C31—O32125.09 (15)O424—C427—H47A109.5
O31—C31—C3123.28 (15)O424—C427—H47B109.5
O32—C31—C3111.61 (14)H47A—C427—H47B109.5
C31—O32—C32116.83 (14)O424—C427—H47C109.5
O32—C32—C33110.10 (15)H47A—C427—H47C109.5
O32—C32—H32A109.6H47B—C427—H47C109.5
C33—C32—H32A109.6
C8A—N1—C2—C32.4 (2)C7—C8—C8A—C4A1.2 (2)
C8A—N1—C2—C21179.40 (15)C4—C3—C31—O31106.0 (2)
N1—C2—C3—C40.8 (3)C2—C3—C31—O3173.7 (2)
C21—C2—C3—C4178.89 (16)C4—C3—C31—O3275.5 (2)
N1—C2—C3—C31179.59 (15)C2—C3—C31—O32104.85 (17)
C21—C2—C3—C311.5 (2)O31—C31—O32—C323.5 (2)
C2—C3—C4—C4A1.7 (2)C3—C31—O32—C32178.03 (14)
C31—C3—C4—C4A177.92 (14)C31—O32—C32—C3393.04 (19)
C2—C3—C4—C41176.96 (15)C3—C4—C41—C4248.8 (2)
C31—C3—C4—C413.4 (2)C4A—C4—C41—C42132.53 (17)
C3—C4—C4A—C5176.06 (15)C4—C41—C42—C421177.48 (15)
C41—C4—C4A—C55.2 (2)C41—C42—C421—C4221.2 (3)
C3—C4—C4A—C8A2.4 (2)C41—C42—C421—C426178.77 (16)
C41—C4—C4A—C8A176.28 (14)C426—C421—C422—C4232.2 (2)
C8A—C4A—C5—C61.7 (2)C42—C421—C422—C423175.34 (15)
C4—C4A—C5—C6179.86 (16)C421—C422—C423—C4240.2 (3)
C4A—C5—C6—C70.3 (3)C422—C423—C424—O424177.63 (16)
C5—C6—C7—C80.7 (3)C422—C423—C424—C4252.3 (3)
C6—C7—C8—C8A0.2 (3)O424—C424—C425—C426177.99 (16)
C2—N1—C8A—C4A1.6 (2)C423—C424—C425—C4262.0 (3)
C2—N1—C8A—C8178.18 (15)C424—C425—C426—C4210.5 (3)
C5—C4A—C8A—N1177.69 (15)C422—C421—C426—C4252.6 (2)
C4—C4A—C8A—N10.9 (2)C42—C421—C426—C425175.09 (15)
C5—C4A—C8A—C82.1 (2)C423—C424—O424—C4270.9 (3)
C4—C4A—C8A—C8179.38 (15)C425—C424—O424—C427179.02 (16)
C7—C8—C8A—N1178.61 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32B···O424i0.992.573.406 (2)142
C423—H423···Cg1ii0.952.913.4894 (19)120
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
Ethyl (E)-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline-3-carboxylate (V) top
Crystal data top
C21H18BrNO2F(000) = 808
Mr = 396.26Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.5709 (6) ÅCell parameters from 4558 reflections
b = 10.6119 (7) Åθ = 2.2–28.3°
c = 18.2074 (10) ŵ = 2.24 mm1
β = 90.939 (2)°T = 100 K
V = 1849.0 (2) Å3Block, yellow
Z = 40.25 × 0.18 × 0.15 mm
Data collection top
Bruker D8 Venture
diffractometer
4588 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube4098 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.041
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.595, Tmax = 0.715k = 1414
54534 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0237P)2 + 1.0895P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
4588 reflectionsΔρmax = 0.35 e Å3
228 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22794 (12)0.20653 (11)0.63602 (6)0.0186 (2)
C20.36010 (14)0.19499 (13)0.61835 (7)0.0179 (3)
C30.45699 (14)0.29687 (13)0.62494 (7)0.0161 (2)
C40.41542 (14)0.41110 (12)0.65325 (7)0.0156 (2)
C4A0.27233 (14)0.42464 (13)0.67343 (7)0.0165 (3)
C50.21593 (15)0.53906 (14)0.70002 (8)0.0211 (3)
H50.27560.60920.70860.025*
C60.07589 (16)0.54916 (15)0.71338 (8)0.0249 (3)
H60.03900.62640.73090.030*
C70.01353 (16)0.44582 (15)0.70130 (9)0.0261 (3)
H70.11060.45400.71040.031*
C80.03799 (15)0.33360 (14)0.67658 (8)0.0225 (3)
H80.02320.26410.66920.027*
C8A0.18202 (14)0.32044 (13)0.66196 (7)0.0172 (3)
C210.40674 (16)0.06875 (14)0.59035 (9)0.0269 (3)
H21A0.33820.00440.60360.040*
H21B0.49780.04750.61240.040*
H21C0.41460.07210.53680.040*
C310.60558 (14)0.27447 (13)0.60265 (7)0.0181 (3)
O310.70170 (11)0.25715 (11)0.64455 (6)0.0248 (2)
O320.61517 (11)0.27338 (11)0.52926 (5)0.0241 (2)
C320.75437 (17)0.25167 (17)0.49963 (9)0.0306 (3)
H32A0.74550.21420.45000.037*
H32B0.80600.19140.53150.037*
C330.83439 (18)0.37338 (18)0.49542 (9)0.0339 (4)
H33A0.78020.43480.46660.051*
H33B0.92410.35840.47180.051*
H33C0.85100.40620.54510.051*
C410.51187 (14)0.51853 (12)0.66208 (7)0.0168 (3)
H410.51770.55910.70860.020*
C420.59134 (15)0.56169 (13)0.60807 (7)0.0185 (3)
H420.58250.52090.56180.022*
C4210.69122 (14)0.66634 (13)0.61359 (7)0.0174 (3)
C4220.73110 (15)0.72094 (13)0.68058 (7)0.0189 (3)
H4220.69180.69080.72480.023*
C4230.82710 (14)0.81836 (13)0.68316 (7)0.0188 (3)
H4230.85360.85520.72890.023*
C4240.88435 (14)0.86183 (12)0.61828 (7)0.0176 (3)
Br421.02007 (2)0.99228 (2)0.62329 (2)0.02109 (5)
C4250.84705 (16)0.81022 (14)0.55109 (8)0.0235 (3)
H4250.88610.84120.50700.028*
C4260.75115 (16)0.71199 (14)0.54958 (8)0.0235 (3)
H4260.72570.67500.50380.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0177 (6)0.0175 (5)0.0206 (6)0.0064 (4)0.0008 (4)0.0001 (4)
C20.0191 (7)0.0169 (6)0.0178 (6)0.0046 (5)0.0003 (5)0.0006 (5)
C30.0147 (6)0.0187 (6)0.0149 (6)0.0045 (5)0.0009 (5)0.0007 (5)
C40.0158 (6)0.0170 (6)0.0138 (6)0.0049 (5)0.0018 (5)0.0018 (5)
C4A0.0160 (6)0.0180 (6)0.0156 (6)0.0034 (5)0.0003 (5)0.0008 (5)
C50.0200 (7)0.0199 (6)0.0233 (7)0.0036 (5)0.0003 (5)0.0028 (5)
C60.0212 (7)0.0262 (7)0.0274 (7)0.0023 (6)0.0001 (6)0.0064 (6)
C70.0161 (7)0.0326 (8)0.0295 (8)0.0016 (6)0.0020 (6)0.0028 (6)
C80.0159 (7)0.0265 (7)0.0251 (7)0.0070 (5)0.0008 (5)0.0011 (6)
C8A0.0155 (6)0.0195 (6)0.0167 (6)0.0045 (5)0.0007 (5)0.0012 (5)
C210.0246 (8)0.0188 (7)0.0374 (8)0.0057 (6)0.0054 (6)0.0077 (6)
C310.0179 (6)0.0169 (6)0.0194 (6)0.0048 (5)0.0019 (5)0.0020 (5)
O310.0167 (5)0.0347 (6)0.0231 (5)0.0001 (4)0.0004 (4)0.0009 (4)
O320.0202 (5)0.0344 (6)0.0178 (5)0.0032 (4)0.0034 (4)0.0043 (4)
C320.0250 (8)0.0413 (9)0.0258 (8)0.0002 (7)0.0109 (6)0.0066 (7)
C330.0262 (8)0.0466 (10)0.0293 (8)0.0023 (7)0.0084 (7)0.0050 (7)
C410.0153 (6)0.0167 (6)0.0184 (6)0.0038 (5)0.0019 (5)0.0004 (5)
C420.0202 (7)0.0185 (6)0.0165 (6)0.0070 (5)0.0027 (5)0.0003 (5)
C4210.0171 (6)0.0174 (6)0.0175 (6)0.0054 (5)0.0013 (5)0.0010 (5)
C4220.0201 (7)0.0206 (6)0.0162 (6)0.0066 (5)0.0028 (5)0.0002 (5)
C4230.0191 (7)0.0194 (6)0.0179 (6)0.0068 (5)0.0011 (5)0.0029 (5)
C4240.0160 (6)0.0158 (6)0.0211 (6)0.0069 (5)0.0003 (5)0.0003 (5)
Br420.02136 (8)0.02079 (8)0.02118 (7)0.01179 (5)0.00231 (5)0.00103 (5)
C4250.0268 (8)0.0264 (7)0.0174 (6)0.0125 (6)0.0020 (6)0.0032 (5)
C4260.0286 (8)0.0261 (7)0.0158 (6)0.0132 (6)0.0015 (5)0.0004 (5)
Geometric parameters (Å, º) top
N1—C21.3160 (18)O32—C321.4638 (17)
N1—C8A1.3725 (18)C32—C331.504 (2)
C2—C31.4282 (18)C32—H32A0.9900
C2—C211.5038 (19)C32—H32B0.9900
C3—C41.3784 (19)C33—H33A0.9800
C3—C311.5042 (19)C33—H33B0.9800
C4—C4A1.4309 (18)C33—H33C0.9800
C4—C411.4741 (18)C41—C421.3341 (19)
C4A—C8A1.4168 (18)C41—H410.9500
C4A—C51.4173 (19)C42—C4211.4676 (18)
C5—C61.370 (2)C42—H420.9500
C5—H50.9500C421—C4261.3942 (19)
C6—C71.406 (2)C421—C4221.3977 (18)
C6—H60.9500C422—C4231.3834 (18)
C7—C81.368 (2)C422—H4220.9500
C7—H70.9500C423—C4241.3891 (18)
C8—C8A1.4152 (19)C423—H4230.9500
C8—H80.9500C424—C4251.3820 (19)
C21—H21A0.9800C424—Br421.8996 (13)
C21—H21B0.9800C425—C4261.3889 (19)
C21—H21C0.9800C425—H4250.9500
C31—O311.1997 (17)C426—H4260.9500
C31—O321.3409 (17)
C2—N1—C8A118.72 (12)C31—O32—C32116.51 (12)
N1—C2—C3122.30 (13)O32—C32—C33110.54 (13)
N1—C2—C21117.24 (12)O32—C32—H32A109.5
C3—C2—C21120.46 (12)C33—C32—H32A109.5
C4—C3—C2120.41 (12)O32—C32—H32B109.5
C4—C3—C31121.32 (12)C33—C32—H32B109.5
C2—C3—C31118.24 (12)H32A—C32—H32B108.1
C3—C4—C4A117.88 (12)C32—C33—H33A109.5
C3—C4—C41122.47 (12)C32—C33—H33B109.5
C4A—C4—C41119.64 (12)H33A—C33—H33B109.5
C8A—C4A—C5118.96 (12)C32—C33—H33C109.5
C8A—C4A—C4117.89 (12)H33A—C33—H33C109.5
C5—C4A—C4123.04 (12)H33B—C33—H33C109.5
C6—C5—C4A120.45 (13)C42—C41—C4123.28 (12)
C6—C5—H5119.8C42—C41—H41118.4
C4A—C5—H5119.8C4—C41—H41118.4
C5—C6—C7120.38 (14)C41—C42—C421126.00 (13)
C5—C6—H6119.8C41—C42—H42117.0
C7—C6—H6119.8C421—C42—H42117.0
C8—C7—C6120.58 (14)C426—C421—C422118.37 (12)
C8—C7—H7119.7C426—C421—C42118.82 (12)
C6—C7—H7119.7C422—C421—C42122.80 (12)
C7—C8—C8A120.35 (13)C423—C422—C421120.74 (12)
C7—C8—H8119.8C423—C422—H422119.6
C8A—C8—H8119.8C421—C422—H422119.6
N1—C8A—C8118.03 (12)C422—C423—C424119.36 (12)
N1—C8A—C4A122.69 (12)C422—C423—H423120.3
C8—C8A—C4A119.27 (13)C424—C423—H423120.3
C2—C21—H21A109.5C425—C424—C423121.43 (12)
C2—C21—H21B109.5C425—C424—Br42119.86 (10)
H21A—C21—H21B109.5C423—C424—Br42118.69 (10)
C2—C21—H21C109.5C424—C425—C426118.42 (13)
H21A—C21—H21C109.5C424—C425—H425120.8
H21B—C21—H21C109.5C426—C425—H425120.8
O31—C31—O32124.62 (13)C425—C426—C421121.67 (13)
O31—C31—C3124.83 (12)C425—C426—H426119.2
O32—C31—C3110.53 (12)C421—C426—H426119.2
C8A—N1—C2—C30.3 (2)C5—C4A—C8A—C80.6 (2)
C8A—N1—C2—C21179.82 (13)C4—C4A—C8A—C8175.68 (12)
N1—C2—C3—C42.6 (2)C4—C3—C31—O3175.39 (19)
C21—C2—C3—C4177.51 (13)C2—C3—C31—O31102.56 (17)
N1—C2—C3—C31179.45 (12)C4—C3—C31—O32106.17 (14)
C21—C2—C3—C310.46 (19)C2—C3—C31—O3275.88 (15)
C2—C3—C4—C4A1.82 (19)O31—C31—O32—C321.2 (2)
C31—C3—C4—C4A179.73 (12)C3—C31—O32—C32179.65 (12)
C2—C3—C4—C41179.17 (12)C31—O32—C32—C3385.21 (17)
C31—C3—C4—C411.3 (2)C3—C4—C41—C4251.4 (2)
C3—C4—C4A—C8A0.97 (18)C4A—C4—C41—C42127.57 (15)
C41—C4—C4A—C8A178.07 (12)C4—C41—C42—C421178.74 (13)
C3—C4—C4A—C5177.12 (13)C41—C42—C421—C426170.67 (15)
C41—C4—C4A—C51.9 (2)C41—C42—C421—C42210.6 (2)
C8A—C4A—C5—C60.9 (2)C426—C421—C422—C4230.4 (2)
C4—C4A—C5—C6175.18 (13)C42—C421—C422—C423179.12 (13)
C4A—C5—C6—C70.4 (2)C421—C422—C423—C4240.1 (2)
C5—C6—C7—C80.5 (2)C422—C423—C424—C4250.3 (2)
C6—C7—C8—C8A0.8 (2)C422—C423—C424—Br42178.17 (11)
C2—N1—C8A—C8176.31 (13)C423—C424—C425—C4260.7 (2)
C2—N1—C8A—C4A2.7 (2)Br42—C424—C425—C426177.77 (12)
C7—C8—C8A—N1178.88 (14)C424—C425—C426—C4210.9 (2)
C7—C8—C8A—C4A0.2 (2)C422—C421—C426—C4250.8 (2)
C5—C4A—C8A—N1179.67 (13)C42—C421—C426—C425179.57 (14)
C4—C4A—C8A—N13.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C423—H423···O31i0.952.593.2197 (17)124
C426—H426···Cg1ii0.952.743.5961 (16)151
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1.
Ethyl (E)-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline-3-carboxylate (VI) top
Crystal data top
C22H18F3NO2Z = 2
Mr = 385.37F(000) = 400
Triclinic, P1Dx = 1.417 Mg m3
a = 8.7465 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9436 (11) ÅCell parameters from 4022 reflections
c = 11.1116 (11) Åθ = 2.2–28.3°
α = 105.446 (4)°µ = 0.11 mm1
β = 99.763 (4)°T = 100 K
γ = 97.204 (4)°Block, yellow
V = 903.08 (17) Å30.27 × 0.20 × 0.18 mm
Data collection top
Bruker D8 Venture
diffractometer
4491 independent reflections
Radiation source: INCOATEC high brilliance microfocus sealed tube3692 reflections with I > 2σ(I)
Multilayer mirror monochromatorRint = 0.042
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1111
Tmin = 0.954, Tmax = 0.980k = 1313
59876 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.7003P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4491 reflectionsΔρmax = 0.43 e Å3
255 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.07789 (14)0.22664 (13)0.15945 (11)0.0204 (2)
C20.07976 (16)0.36156 (15)0.21549 (13)0.0192 (3)
C30.16984 (15)0.43512 (14)0.34110 (13)0.0171 (3)
C40.25843 (15)0.36523 (14)0.41074 (12)0.0168 (3)
C4A0.26008 (15)0.21910 (14)0.35031 (13)0.0173 (3)
C50.34837 (17)0.13520 (15)0.40993 (14)0.0216 (3)
H50.40930.17580.49440.026*
C60.34646 (18)0.00371 (16)0.34678 (15)0.0251 (3)
H60.40670.05850.38770.030*
C70.25608 (19)0.06624 (15)0.22177 (14)0.0250 (3)
H70.25620.16260.17890.030*
C80.16816 (18)0.01086 (15)0.16161 (14)0.0232 (3)
H80.10670.03230.07760.028*
C8A0.16872 (16)0.15504 (14)0.22455 (13)0.0187 (3)
C210.01256 (19)0.43927 (16)0.13843 (14)0.0251 (3)
H21A0.06050.37490.05300.038*
H21B0.05810.51990.13100.038*
H21C0.09550.47370.18100.038*
C310.17896 (16)0.59297 (14)0.38398 (13)0.0180 (3)
O310.29053 (12)0.67679 (11)0.38197 (10)0.0231 (2)
O320.04628 (11)0.62833 (10)0.41672 (9)0.0200 (2)
C320.03379 (17)0.77805 (14)0.44196 (14)0.0207 (3)
H32A0.07880.78710.43200.025*
H32B0.07730.81610.37860.025*
C330.12155 (18)0.86413 (16)0.57495 (14)0.0250 (3)
H33A0.08480.82190.63750.037*
H33B0.10190.96160.59170.037*
H33C0.23480.86460.58180.037*
C410.35128 (16)0.43372 (14)0.54207 (13)0.0184 (3)
H410.44820.40380.56500.022*
C420.31086 (16)0.53430 (15)0.63157 (13)0.0193 (3)
H420.21400.56480.60980.023*
C4210.40671 (16)0.60055 (15)0.76133 (13)0.0192 (3)
C4220.52605 (17)0.53948 (15)0.81430 (13)0.0213 (3)
H4220.54510.45090.76670.026*
C4230.61718 (17)0.60661 (16)0.93570 (14)0.0236 (3)
H4230.69850.56430.97070.028*
C4240.58945 (17)0.73547 (16)1.00582 (13)0.0228 (3)
C4250.46796 (19)0.79605 (16)0.95666 (14)0.0259 (3)
H4250.44740.88321.00590.031*
C4260.37692 (18)0.72844 (16)0.83523 (14)0.0240 (3)
H4260.29330.76950.80180.029*
C4270.6902 (2)0.81210 (18)1.13510 (15)0.0302 (3)
F4710.74662 (16)0.94629 (12)1.14494 (11)0.0523 (3)
F4720.81434 (15)0.75355 (14)1.16419 (11)0.0539 (4)
F4730.61164 (15)0.81641 (14)1.22927 (10)0.0506 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0231 (6)0.0206 (6)0.0159 (5)0.0032 (4)0.0012 (4)0.0049 (4)
C20.0200 (6)0.0198 (6)0.0175 (6)0.0032 (5)0.0025 (5)0.0061 (5)
C30.0170 (6)0.0167 (6)0.0178 (6)0.0030 (5)0.0044 (5)0.0050 (5)
C40.0153 (6)0.0176 (6)0.0164 (6)0.0014 (5)0.0026 (5)0.0045 (5)
C4A0.0178 (6)0.0166 (6)0.0177 (6)0.0027 (5)0.0037 (5)0.0054 (5)
C50.0227 (7)0.0206 (7)0.0203 (6)0.0039 (5)0.0015 (5)0.0061 (5)
C60.0291 (7)0.0198 (7)0.0263 (7)0.0070 (6)0.0018 (6)0.0079 (6)
C70.0311 (8)0.0170 (6)0.0250 (7)0.0051 (6)0.0050 (6)0.0036 (5)
C80.0286 (7)0.0201 (7)0.0181 (6)0.0030 (5)0.0032 (5)0.0023 (5)
C8A0.0201 (6)0.0187 (6)0.0169 (6)0.0028 (5)0.0034 (5)0.0053 (5)
C210.0292 (7)0.0249 (7)0.0196 (7)0.0059 (6)0.0017 (5)0.0080 (5)
C310.0192 (6)0.0183 (6)0.0166 (6)0.0044 (5)0.0024 (5)0.0055 (5)
O310.0212 (5)0.0190 (5)0.0293 (5)0.0034 (4)0.0061 (4)0.0070 (4)
O320.0183 (5)0.0184 (5)0.0230 (5)0.0045 (4)0.0043 (4)0.0051 (4)
C320.0216 (6)0.0184 (6)0.0225 (7)0.0072 (5)0.0035 (5)0.0057 (5)
C330.0271 (7)0.0217 (7)0.0236 (7)0.0065 (6)0.0028 (6)0.0032 (5)
C410.0165 (6)0.0186 (6)0.0182 (6)0.0005 (5)0.0004 (5)0.0055 (5)
C420.0181 (6)0.0204 (6)0.0177 (6)0.0023 (5)0.0011 (5)0.0050 (5)
C4210.0183 (6)0.0207 (6)0.0167 (6)0.0015 (5)0.0026 (5)0.0038 (5)
C4220.0215 (7)0.0219 (7)0.0191 (6)0.0050 (5)0.0034 (5)0.0037 (5)
C4230.0220 (7)0.0288 (7)0.0196 (7)0.0068 (6)0.0018 (5)0.0069 (6)
C4240.0234 (7)0.0246 (7)0.0164 (6)0.0007 (5)0.0013 (5)0.0027 (5)
C4250.0307 (8)0.0207 (7)0.0214 (7)0.0047 (6)0.0012 (6)0.0004 (5)
C4260.0250 (7)0.0225 (7)0.0212 (7)0.0063 (5)0.0001 (5)0.0030 (5)
C4270.0324 (8)0.0313 (8)0.0199 (7)0.0023 (6)0.0023 (6)0.0023 (6)
F4710.0664 (8)0.0348 (6)0.0344 (6)0.0146 (5)0.0164 (5)0.0025 (5)
F4720.0479 (7)0.0611 (8)0.0335 (6)0.0201 (6)0.0186 (5)0.0060 (5)
F4730.0511 (7)0.0703 (8)0.0182 (5)0.0011 (6)0.0044 (4)0.0003 (5)
Geometric parameters (Å, º) top
N1—C21.3168 (18)C32—C331.511 (2)
N1—C8A1.3720 (18)C32—H32A0.9900
C2—C31.4292 (18)C32—H32B0.9900
C2—C211.5021 (19)C33—H33A0.9800
C3—C41.3786 (18)C33—H33B0.9800
C3—C311.5014 (18)C33—H33C0.9800
C4—C4A1.4322 (18)C41—C421.3388 (19)
C4—C411.4774 (18)C41—H410.9500
C4A—C51.4191 (19)C42—C4211.4701 (18)
C4A—C8A1.4200 (18)C42—H420.9500
C5—C61.369 (2)C421—C4221.3949 (19)
C5—H50.9500C421—C4261.400 (2)
C6—C71.409 (2)C422—C4231.3867 (19)
C6—H60.9500C422—H4220.9500
C7—C81.368 (2)C423—C4241.385 (2)
C7—H70.9500C423—H4230.9500
C8—C8A1.4168 (19)C424—C4251.389 (2)
C8—H80.9500C424—C4271.497 (2)
C21—H21A0.9800C425—C4261.387 (2)
C21—H21B0.9800C425—H4250.9500
C21—H21C0.9800C426—H4260.9500
C31—O311.2087 (17)C427—F4721.328 (2)
C31—O321.3342 (17)C427—F4711.332 (2)
O32—C321.4614 (16)C427—F4731.340 (2)
C2—N1—C8A118.08 (12)C33—C32—H32A109.3
N1—C2—C3122.90 (12)O32—C32—H32B109.3
N1—C2—C21116.74 (12)C33—C32—H32B109.3
C3—C2—C21120.30 (12)H32A—C32—H32B108.0
C4—C3—C2120.52 (12)C32—C33—H33A109.5
C4—C3—C31122.57 (12)C32—C33—H33B109.5
C2—C3—C31116.42 (11)H33A—C33—H33B109.5
C3—C4—C4A117.29 (12)C32—C33—H33C109.5
C3—C4—C41123.40 (12)H33A—C33—H33C109.5
C4A—C4—C41119.30 (12)H33B—C33—H33C109.5
C5—C4A—C8A118.41 (12)C42—C41—C4125.72 (13)
C5—C4A—C4123.25 (12)C42—C41—H41117.1
C8A—C4A—C4118.35 (12)C4—C41—H41117.1
C6—C5—C4A120.57 (13)C41—C42—C421124.22 (13)
C6—C5—H5119.7C41—C42—H42117.9
C4A—C5—H5119.7C421—C42—H42117.9
C5—C6—C7120.64 (13)C422—C421—C426118.55 (13)
C5—C6—H6119.7C422—C421—C42122.19 (13)
C7—C6—H6119.7C426—C421—C42119.26 (13)
C8—C7—C6120.48 (13)C423—C422—C421120.76 (13)
C8—C7—H7119.8C423—C422—H422119.6
C6—C7—H7119.8C421—C422—H422119.6
C7—C8—C8A120.02 (13)C424—C423—C422119.87 (13)
C7—C8—H8120.0C424—C423—H423120.1
C8A—C8—H8120.0C422—C423—H423120.1
N1—C8A—C8117.31 (12)C423—C424—C425120.37 (13)
N1—C8A—C4A122.82 (12)C423—C424—C427120.69 (14)
C8—C8A—C4A119.87 (12)C425—C424—C427118.94 (14)
C2—C21—H21A109.5C426—C425—C424119.56 (14)
C2—C21—H21B109.5C426—C425—H425120.2
H21A—C21—H21B109.5C424—C425—H425120.2
C2—C21—H21C109.5C425—C426—C421120.83 (14)
H21A—C21—H21C109.5C425—C426—H426119.6
H21B—C21—H21C109.5C421—C426—H426119.6
O31—C31—O32124.46 (13)F472—C427—F471106.29 (15)
O31—C31—C3123.44 (12)F472—C427—F473105.83 (14)
O32—C31—C3111.98 (11)F471—C427—F473106.37 (14)
C31—O32—C32116.34 (11)F472—C427—C424113.19 (14)
O32—C32—C33111.65 (11)F471—C427—C424111.94 (13)
O32—C32—H32A109.3F473—C427—C424112.70 (14)
C8A—N1—C2—C31.0 (2)C2—C3—C31—O3199.75 (16)
C8A—N1—C2—C21176.13 (12)C4—C3—C31—O32111.53 (14)
N1—C2—C3—C41.0 (2)C2—C3—C31—O3276.46 (15)
C21—C2—C3—C4178.09 (13)O31—C31—O32—C324.82 (19)
N1—C2—C3—C31171.16 (13)C3—C31—O32—C32171.35 (11)
C21—C2—C3—C315.91 (19)C31—O32—C32—C3380.77 (15)
C2—C3—C4—C4A2.11 (19)C3—C4—C41—C4234.8 (2)
C31—C3—C4—C4A169.59 (12)C4A—C4—C41—C42145.85 (14)
C2—C3—C4—C41178.53 (12)C4—C41—C42—C421179.75 (12)
C31—C3—C4—C419.8 (2)C41—C42—C421—C42217.7 (2)
C3—C4—C4A—C5178.82 (13)C41—C42—C421—C426162.95 (14)
C41—C4—C4A—C50.6 (2)C426—C421—C422—C4232.4 (2)
C3—C4—C4A—C8A1.24 (19)C42—C421—C422—C423178.24 (13)
C41—C4—C4A—C8A179.38 (12)C421—C422—C423—C4240.3 (2)
C8A—C4A—C5—C60.7 (2)C422—C423—C424—C4251.8 (2)
C4—C4A—C5—C6179.36 (13)C422—C423—C424—C427177.82 (14)
C4A—C5—C6—C70.4 (2)C423—C424—C425—C4261.7 (2)
C5—C6—C7—C80.3 (2)C427—C424—C425—C426177.92 (14)
C6—C7—C8—C8A0.6 (2)C424—C425—C426—C4210.5 (2)
C2—N1—C8A—C8178.55 (13)C422—C421—C426—C4252.5 (2)
C2—N1—C8A—C4A1.9 (2)C42—C421—C426—C425178.13 (14)
C7—C8—C8A—N1179.83 (14)C423—C424—C427—F4728.1 (2)
C7—C8—C8A—C4A0.3 (2)C425—C424—C427—F472171.53 (15)
C5—C4A—C8A—N1179.16 (13)C423—C424—C427—F471128.18 (17)
C4—C4A—C8A—N10.8 (2)C425—C424—C427—F47151.4 (2)
C5—C4A—C8A—C80.3 (2)C423—C424—C427—F473111.97 (17)
C4—C4A—C8A—C8179.70 (12)C425—C424—C427—F47368.4 (2)
C4—C3—C31—O3172.26 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C41—H41···O31i0.952.543.4922 (18)178
C422—H422···O31i0.952.563.3924 (19)146
Symmetry code: (i) x+1, y+1, z+1.
Selected torsional angles (°) for compounds (I)–(VIII). top
CompoundC3—C4—C41—C42C41—C42—C421—C422C2—C3—C31—O31C2—C3—C31—O32
(I)46.40 (16)13.78 (18)66.18 (15)
(II)46.8 (3)14.8 (3)68.2 (2)
(III)49.0 (2)13.0 (2)69.52 (18)
(IV)48.8 (2)1.2 (3)73.7 (2)-104.85 (17)
(V)51.4 (2)10.6 (2)-102.56 (17)75.88 (15)
(VI)34.8 (2)-17.7 (2)-99.75 (16)76.46 (15)
(VII)51.0 (5)2.0 (5)71.5 (4)
(VIII)54.17 (19)-4.0 (2)-97.59 (15)
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(VIII). top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C41—H41···O31i0.952.413.2527 (15)148
C426-H426···Cg3ii0.952.773.5252 (13)138
(II)C41—H41···O31i0.952.373.283 (2)161
C426—H426···Cg3ii0.952.913.7071 (19)142
(III)C41—H41···O31i0.952.423.3290 (17)161
C426—H426···Cg3ii0.953.003.7621 (15)138
(IV)C32—H32B···O424iii0.992.573.406 (2)142
C423—H423···Cg1iv0.952.913.4894 (19)120
(V)C423—H423···O31v0.952.593.2197 (17)124
C426—H426···Cg1iv0.952.743.5961 (16)151
(VI)C41—H41···O31iv0.952.543.4922 (18)178
C422—H422···O31iv0.952.563.3924 (19)146
(VII)C41—H41···O31vi0.952.373.300 (5)167
C422—H422···O31vi0.952.573.506 (4)169
C426—H426···Cg4vii0.952.673.549 (4)155
(VIII)C334—H334···O31viii0.952.613.542 (2)168
C7—H7···Cg5ix0.952.933.6437 (16)133
C422—H422···Cg1x0.952.933.6300 (17)132
Cg1, Cg3, Cg4 and Cg5 represent the centroids of the N1/C2–C4/C4A/C8A, C421–C426, C311–C316 [present in (VII) only] and C331–C336 [present in (VIII) only] rings, respectively; ring 2 comprises atoms C4A/C5–C8/C8A.

Symmetry codes: (i) x, y+1, z; (ii) -x+1, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x+3/2, y+1/2, -z+3/2; (vi) x-1/2, y, -z+1/2; (vii) -x+3/2, y-1/2, z; (viii) x-1, y, z; (ix) x+1/2, -y+1/2, z-1/2; (x) x+1/2, -y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Centro de Instrumentación, Científico-Técnica of the Universidad de Jaén (UJA), and its staff for the data collection.

Funding information

Funding for this research was provided by: Vicerrectoría de Investigación y Extensión de la Universidad Industrial de Santander (proyecto No. 2497, to AP); Universidad de Jaén, the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) and Centro de Instrumentación Científico–Técnica of the Universidad de Jaén (UJA) (to JC).

References

First citationAcosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlanco, M. C., Palma, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o195–o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBürgi, H. B., Dunitz, J. D., Lehn, J. M. & Wipff, M. (1974). Tetrahedron, 30, 1563–1572.  Google Scholar
First citationChantrapromma, S., Kaewmanee, N., Boonnak, N., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o395–o396.  CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, S. & Fun, H.-K. (2008). Acta Cryst. E64, o876–o877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCieslik, W., Musiol, R., Nycz, J. E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B. & Polanski, J. (2012). Bioorg. Med. Chem. 20, 6960–6968.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl-Sayed, M. A.-A., El-Husseiny, W. M., Abdel-Aziz, N. I., El-Azab, A. S., Abuelizz, H. A. & Abdel-Aziz, A. A.-M. (2018). J. Enzyme Inhib. Med. Chem. 33, 199–209.  Web of Science CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kaewmanee, N., Chanawanno, K., Boonnak, N. & Chantrapromma, S. (2013). Acta Cryst. E69, o1510–o1511.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatritzsky, A. R., Meth-Cohn, O. & Rees, C. (1995). In Comprehensive Organic Functional Group Transformations. Oxford: Pergamon Press.  Google Scholar
First citationKobkeatthawin, T., Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o642–o643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKobkeatthawin, T., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o76–o77.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuz'mina, L. G., Sitin, A. G., Gulakova, E., Fedorova, O. A., Lermontova, E. K. & Churakov, A. V. (2012). Crystallogr. Rep. 57, 85–95.  CAS Google Scholar
First citationMeléndez, A., Plata, A., Rodríguez, R., Ardila, D., Guerrero, S. A., Acosta, L. M., Cobo, J., Nogueras, M. & Palma, A. (2020). Synthesis, 52, 1804–1822.  Google Scholar
First citationNayak, P. S., Narayana, B., Yathirajan, H. S., Hosten, E. C., Betz, R. & Glidewell, C. (2014). Acta Cryst. C70, 1011–1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOmar, W. A. E. & Hormi, O. E. O. (2009). Tetrahedron, 65, 4422–4428.  Web of Science CrossRef CAS Google Scholar
First citationPolanski, J., Zouhiri, F., Jeanson, L., Desmaële, D., d'Angelo, J., Mouscadet, J. F., Gieleciak, R., Gasteiger, J. & Le Bret, M. (2002). J. Med. Chem. 45, 4647–4654.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoberts, B. F., Zheng, Y., Cleaveleand, J., Lee, S., Lee, E., Ayong, L., Yuan, Y. & Chakrabarti, D. (2017). Int. J. Parasitol. Drugs Drug Resist. 7, 120–129.  Web of Science CrossRef PubMed Google Scholar
First citationSamshuddin, S., Jasinski, J. P., Golen, J. A., Narayana, B., Yathirajan, H. S. & Glidewell, C. (2014). Acta Cryst. C70, 867–871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, R., Kumar, R., Kumar, I. & Sharma, U. (2015). Eur. J. Org. Chem. 2015, 7519–7528.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationValle, G., Busetti, V. & Galiazzo, G. (1986). Z. Kristallogr. 177, 315–318.  CrossRef CAS Web of Science Google Scholar
First citationWang, X. Q., Xia, C. L., Chen, S. B., Tan, J. H., Ou, T. M., Huang, S. L., Li, D., Gu, L. Q. & Huang, Z. S. (2015). Eur. J. Med. Chem. 89, 349–361.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationXia, H., Liu, Y., Zhao, P., Gou, S. & Wang, J. (2016). Org. Lett. 18, 1796–1799.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds