Skip to main content
Log in

Steel scrap melting model for a dephosphorisation basic oxygen furnace

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Dephosphorisation basic oxygen furnaces (deP-BOFs) greatly differ from conventional BOFs in the melting process, especially its many limits on adding scrap. A mathematical model of the steel scrap melting process was established in MATLAB to investigate the mechanism of scrap melting in deP-BOF in terms of coupling effects of the carbon content of the molten steel, temperature, scrap preheating and converter blowing time on the melting rate and size of the steel scraps. The scrap melting rate was influenced by both the heat and mass transfer during the melting process: at 1350 °C, when the carbon content was increased from 4.5 to 5.0 mass%, the scrap melting rate increased by 43%; for the carbon content of 4.5 mass%, when the temperature was increased from 1350 to 1400 °C, the scrap melting rate increased by 60%. The carbonisation was found to be the restrictive step of the scrap melting process in deP-BOFs with respect to conventional ones. The scrap heating from room temperature to 800 °C reduced the crusting thickness on the scrap surface but there was no obvious influence on the melting rate. The scrap melting size in the deP-BOF was rather limited by its low melting rate and short melting time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Asai, I. Muchi, Tetsu-to-Hagane 56 (1970) 546–557.

    Article  Google Scholar 

  2. F. Oeters, Metallurgy of steelmaking, Verlag Stahleisen mbH, Düsseldorf, Germany, 1989.

    Google Scholar 

  3. J. Szekely, Y.K. Chuang, J.W. Hlinka, Metall. Mater. Trans. B 3 (1972) 2825–2833.

    Article  Google Scholar 

  4. A. Kruskopf, L. Holappa, Metall. Res. Technol. 115 (2018) 201.

    Article  Google Scholar 

  5. F.M. Penz, J. Schenk, Steel Res. Int. 90 (2019) 1900124.

    Article  Google Scholar 

  6. R.D. Pehlke, P.D. Goodell, R.W. Dunlap, Trans. Met. Soc. AIME 233 (1965) 1420–1431.

    Google Scholar 

  7. J.H. Li, N. Provatas, G. Brooks, Metall. Mater. Trans. B 36 (2005) 293–302.

    Article  Google Scholar 

  8. K. Isobe, H. Maede, K. Ozawa, K. Umezawa, C. Saito, Tetsu-to-Hagane 76 (1990) 2033–2040.

    Article  Google Scholar 

  9. F.M. Penz, J. Schenk, R. Ammer, G. Klösch, K. Pastucha, M. Reischl, Materials 12 (2019) 1358.

    Article  Google Scholar 

  10. A. Kruskopf, Metall. Mater. Trans. B 46 (2015) 1195–1206.

    Article  Google Scholar 

  11. D.C. Guo, D. Swickard, M. Alavanja, J. Bradley, Iron Steel Technol. (2013) No. 4, 125–132.

    Google Scholar 

  12. A.K. Shukla, B. Deo, D.G.C. Robertson, Metall. Mater. Trans. B 44 (2013) 1407–1427.

    Article  Google Scholar 

  13. H.W. Hartog, P.J. Kreyger, A.B. Snoeijer, CRM 37 (1973) 13–21.

    Google Scholar 

  14. J.K. Wright, Metall. Mater. Trans. B 20 (1989) 363–374.

    Article  Google Scholar 

  15. K. Mandal, G.A. Irons, Metall. Mater. Trans. B 44 (2013) 184–195.

    Article  Google Scholar 

  16. M. Kawakami, K. Takatani, L.C. Brabie, Tetsu-to-Hagane 85 (1999) 658–665.

    Article  Google Scholar 

  17. S. Deng, A. Xu, G. Yang, H. Wang, Steel Res. Int. 3 (2019) 1–10.

    Google Scholar 

  18. M. Kosaka, S. Minowa, Tetsu-to-Hagane 52 (1966) 1429–1432.

    Article  Google Scholar 

  19. K. Mori, H. Nomura, Tetsu-to-Hagane 55 (1969) 347–354.

    Article  Google Scholar 

  20. E.T. Goldfarb, B.E. Sherstov, Inzh-Fiz-Zhur 8 (1970) 492–501.

    Google Scholar 

  21. F. Meng, Fundamentals of metallurgical macro dynamics, Metallurgical Industry Press, Beijing, CN, 2014.

    Google Scholar 

  22. E.T. Turkdogan, Foundamentals of steelmaking, The Institute of Materials, London, UK, 1999.

    Google Scholar 

  23. R.J. Fruehan, Adv. Veter Med AP (1997) 368–375.

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant No. 51674030) and the National Key Research and Development Program of China (Grant No. 2016YFB0601301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-jun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Xu, Aj. Steel scrap melting model for a dephosphorisation basic oxygen furnace. J. Iron Steel Res. Int. 27, 972–980 (2020). https://doi.org/10.1007/s42243-020-00461-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00461-6

Keywords

Navigation