Skip to main content
Log in

Access balancing in storage systems by labeling partial Steiner systems

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Storage architectures ranging from minimum bandwidth regenerating encoded distributed storage systems to declustered-parity RAIDs can employ dense partial Steiner systems to support fast reads, writes, and recovery of failed storage units. To enhance performance, popularities of the data items should be taken into account to make frequencies of accesses to storage units as uniform as possible. A combinatorial model ranks items by popularity and assigns data items to elements in a dense partial Steiner system so that the sums of ranks of the elements in each block are as equal as possible. By developing necessary conditions in terms of independent sets, we demonstrate that certain Steiner systems must have a much larger difference between the largest and smallest block sums than is dictated by an elementary lower bound. In contrast, we also show that certain dense partial \(S(t,t+1,v)\) designs can be labeled to realize the elementary lower bound. Furthermore, we prove that for every admissible order v, there is a Steiner triple system (S(2, 3, v)) whose largest difference in block sums is within an additive constant of the lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajtai M., Komlós J., Pintz J., Spencer J., Szemerédi E.: Extremal uncrowded hypergraphs. J. Comb. Theory Ser. A 32(3), 321–335 (1982).

    Article  MathSciNet  Google Scholar 

  2. Bertram-Kretzberg C., Lefmann H.: The algorithmic aspects of uncrowded hypergraphs. SIAM J. Comput. 29(1), 201–230 (1999).

    Article  MathSciNet  Google Scholar 

  3. Bose R.C.: On the construction of balanced incomplete block designs. Ann. Eugenics 9(4), 353–399 (1939).

    Article  MathSciNet  Google Scholar 

  4. Brummond, W.M.: Kirkman systems that attain the upper bound on the minimum block sum, for access balancing in distributed storage (2019). arXiv:1906.02157.

  5. Bryant D., Colbourn C.J., Horsley D., Wanless I.M.: Steiner triple systems with high chromatic index. SIAM J. Discret. Math. 31(4), 2603–2611 (2017).

    Article  MathSciNet  Google Scholar 

  6. Bussey W.H.: The tactical problem of Steiner. Am. Math. Monthly 21(1), 3–12 (1914).

    Article  MathSciNet  Google Scholar 

  7. Chee Y.M., Colbourn C.J., Dau H., Gabrys R., Ling A.C.H., Lusi D., Milenkovic O.: Access balancing in storage systems by labeling partial Steiner systems. In: 2020 IEEE International Symposium on Information Theory (2020).

  8. Chen P.M., Lee E.K., Gibson G.A., Katz R.H., Patterson D.A.: RAID: high-performance, reliable secondary storage. ACM Comput. Surv. 26(2), 145–185 (1994).

    Article  Google Scholar 

  9. Cidon A., Rumble S.M., Stutsman R., Katti S., Ousterhout J.K., Rosenblum M.: Copysets: Reducing the frequency of data loss in cloud storage. In: Usenix Annual Technical Conference, pp. 37–48 (2013).

  10. Colbourn C.J., Rosa A.: Triple Systems. Oxford Mathematical MonographsClarendon Press, Oxford (1999).

    MATH  Google Scholar 

  11. Colbourn C.J., Colbourn M.J., Phelps K.T., Rödl V.: Colouring Steiner quadruple systems. Discret. Appl. Math. 4(2), 103–111 (1982).

    Article  MathSciNet  Google Scholar 

  12. Dau H., Milenkovic O.: MaxMinSum Steiner systems for access balancing in distributed storage. SIAM J. Discret. Math. 32(3), 1644–1671 (2018).

    Article  MathSciNet  Google Scholar 

  13. Doyen J., Vandensavel M.: Non isomorphic Steiner quadruple systems. Bull. Soc. Math. Belg. 23, 393–410 (1971).

    MathSciNet  MATH  Google Scholar 

  14. Duke R.A., Lefmann H., Rödl V.: On uncrowded hypergraphs. Random Struct. Algorithms 6(2–3), 209–212 (1995).

    Article  MathSciNet  Google Scholar 

  15. El Rouayheb S., Ramchandran K.: Fractional repetition codes for repair in distributed storage systems. In: 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1510–1517. IEEE (2010).

  16. Erdős P., Hajnal A.: On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hungar 17, 61–99 (1966).

    Article  MathSciNet  Google Scholar 

  17. Eustis A., Verstraëte J.: On the independence number of Steiner systems. Comb. Probab. Comput. 22(2), 241–252 (2013).

    Article  MathSciNet  Google Scholar 

  18. Fazeli A., Vardy A., Yaakobi E.: Codes for distributed PIR with low storage overhead. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 2852–2856. IEEE (2015).

  19. Fundia A.D.: Derandomizing Chebyshev’s inequality to find independent sets in uncrowded hypergraphs. Random Struct. Algorithms 8(2), 131–147 (1996).

    Article  MathSciNet  Google Scholar 

  20. Grable D.A., Phelps K.T., Rödl V.: The minimum independence number for designs. Combinatorica 15(2), 175–185 (1995).

    Article  MathSciNet  Google Scholar 

  21. Grannell M.J., Griggs T.S., Phelan J.S.: A new look at an old construction for Steiner triple systems. ARS Comb. 25(A), 55–60 (1988).

    MathSciNet  MATH  Google Scholar 

  22. Hanani H.: A note on Steiner triple systems. Math. Scand. 8(1), 154–156 (1960).

    Article  MathSciNet  Google Scholar 

  23. Holland M., Gibson G.A.: Parity declustering for continuous operation in redundant disk arrays. SIGPLAN Not. 27(9), 23–35 (1992).

    Article  Google Scholar 

  24. Ji L.: A construction for 2-chromatic Steiner quadruple systems. Eur. J. Comb. 28(6), 1832–1838 (2007).

    Article  MathSciNet  Google Scholar 

  25. Kostochka A., Mubayi D., Rödl V., Tetali P.: On the chromatic number of set systems. Random Struct. Algorithms 19(2), 87–98 (2001).

    Article  MathSciNet  Google Scholar 

  26. Kostochka A., Mubayi D., Verstraëte J.: On independent sets in hypergraphs. Random Struct. Algorithms 44(2), 224–239 (2014).

    Article  MathSciNet  Google Scholar 

  27. Lovász L.: Coverings and coloring of hypergraphs. In: Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing. Florida Atlantic University, Boca Raton, pp. 3–12 (1973).

  28. Lusi D., Colbourn C.J.: On the maximum double independence number of Steiner triple systems. J. Comb. Des. to appear (2020).

  29. Phelps K.T., Rödl V.: Steiner triple systems with minimum independence number. ARS Comb. 21, 167–172 (1986).

    MathSciNet  MATH  Google Scholar 

  30. Phelps K.T., Rosa A.: \(2\)-Chromatic Steiner quadruple systems. Eur. J. Comb. 1(3), 253–258 (1980).

    Article  MathSciNet  Google Scholar 

  31. Quiring D.: A construction of disjoint Steiner triple systems. J. Comb. Theory Ser. A 27(3), 407–408 (1979).

    Article  MathSciNet  Google Scholar 

  32. Rödl V., Šiňajová E.: Note on independent sets in Steiner systems. Random Struct. Algorithms 5(1), 183–190 (1994).

    Article  MathSciNet  Google Scholar 

  33. Schreiber S.: Covering all triples on n marks by disjoint Steiner systems. J. Comb. Theory Ser. A 15(3), 347–350 (1973).

    Article  MathSciNet  Google Scholar 

  34. Schreiber S.: Some mappings of periodic groups. Israel J. Math. 17, 117–123 (1974).

    Article  MathSciNet  Google Scholar 

  35. Silberstein N., Etzion T.: Optimal fractional repetition codes based on graphs and designs. IEEE Trans. Inf. Theory 61(8), 4164–4180 (2015).

    Article  MathSciNet  Google Scholar 

  36. Silberstein N., Gál A.: Optimal combinatorial batch codes based on block designs. Des. Codes Cryptogr. 78(2), 409–424 (2016).

    Article  MathSciNet  Google Scholar 

  37. Skolem T.: Some remarks on the triple systems of Steiner. Math. Scand. 1, 273–280 (1959).

    MathSciNet  MATH  Google Scholar 

  38. Spencer J.: Turán’s theorem for \(k\)-graphs. Discret. Math. 2, 183–186 (1972).

    Article  Google Scholar 

  39. Tian F., Liu Z.L.: Bounding the independence number in some \((n, k,\ell,\lambda )\)-hypergraphs. Graphs Comb. 34(5), 845–861 (2018).

    Article  MathSciNet  Google Scholar 

  40. Wilson R.M.: Some Partitions of All Triples into Steiner Triple Systems, pp. 267–277. Hypergraph SeminarSpringer, New York (1974).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Colbourn.

Additional information

Communicated by M. Buratti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by NSF Grants CCF 1816913 (CJC) and 1814298 (OM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chee, Y.M., Colbourn, C.J., Dau, H. et al. Access balancing in storage systems by labeling partial Steiner systems. Des. Codes Cryptogr. 88, 2361–2376 (2020). https://doi.org/10.1007/s10623-020-00786-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00786-z

Keywords

Mathematics Subject Classification

Navigation