Skip to main content
Log in

Structural Features of Particles of Goudron CO2 Asphaltenes Precipitated with Various Organic Diluents

  • CURRENT PROBLEMS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

A Correction to this article was published on 17 November 2020

This article has been updated

Transmission electron microscopy (TEM) was used to study the structure of particles of CO2-asphaltenes precipitated from a goudron vacuum residue sample in the gas anti-solvent (GAS) process using heptane, toluene, and their mixture (heptol) as diluents. It was shown that CO2-asphaltenes, despite lower aromaticity and polarity compared to C7-asphaltenes, have a similar irregular layered internal structure, as well as a close distribution of the aromatic layers and similar distance between the layers in the packed crystallites.. The type of the diluent used affects not only the yield and composition of the precipitated CO2-asphaltenes, but also the degree of order and the size of layers of aromatic fragments of the molecules forming their structure. In this respect, toluene as a diluent ensures the formation of CO2 asphaltenes that are comparable to C7-asphaltene particles in their molecular structure and structural parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

Change history

  • 17 November 2020

    To the article ���Structural Features of Particles of Goudron CO2 Asphaltenes Precipitated with Various Organic Diluents,��� by R. N. Magomedov, A. V. Pripakhailo, D. I Panyukova, L. S. Foteeva, and T.A. Maryutina, Vol. 56, No.3, pp. 325-332, July, 2020

References

  1. O. C. Mullins, H. Sabbah, J. Eyssautier, et al., Energy Fuels, 26, 3986-4003 (2012).

    Article  CAS  Google Scholar 

  2. Z. Rashida, C. D. WiIfreda, N. Gnanasundaram. et al., Journal of Petroleum Science and Engineering, 176,249-268 (2019).

    Article  Google Scholar 

  3. S. Alimohammadi, S. Zendehboudi, L. James, Fuel, 252, 753-791(2019).

    Article  CAS  Google Scholar 

  4. P. Luo, X. Wang, Y. Gu, Fluid Phase Equilibria, 291,103-110 (2010).

    Article  CAS  Google Scholar 

  5. J. Ancheyta, G. Centeno, F. Trejo, et al., Energy & Fuels, 16, 1121-1127 (2002).

    Article  CAS  Google Scholar 

  6. M. A. Pudenzi, J. M. Santos, A. Wisniewski, et al., Energy Fuels, 32,1038-1046 (2018).

    Article  CAS  Google Scholar 

  7. E. Rogel, M. Moir, Fuel, 208, 271-280 (2017).

    Article  CAS  Google Scholar 

  8. H. Alboudwarej, J. Beck, W. Y. Svrcek, et al., Energy & Fuels, 16,462-469 (2002).

    Article  CAS  Google Scholar 

  9. R. N. Magomedov, A. V. Pripakhailo, L. S. Foteeva, et al., Khimiya i Tekhnologiya Topliv i Masel, No. 3,49-56(2019).

  10. T. Maqbool, P. Srikiratiwong, H. S. Fogler, Energy Fuels, 25, 694-700 (2011).

    Article  CAS  Google Scholar 

  11. K. A. Lawal, J. P. Crawshaw, E. S. Boek, et al., Energy Fuels, 26, 2145-2153 (2012).

    Article  CAS  Google Scholar 

  12. A. C. Sànchez Berna, V. Camacho Moran, E. T. Romero Guzmàn, et al., Petroleum Science and Technology, 24, 1055-1066 (2006).

    Article  Google Scholar 

  13. F. Trejo, J. Ancheyta, M. S. Rana, Energy & Fuels, 23, No. 1, 429-439 (2009).

    Article  CAS  Google Scholar 

  14. A. Sharma, H. Groenzin, A. Tomita, et al., Energy & Fuels, 16, No. 2, 490-496 (2002).

    Article  CAS  Google Scholar 

  15. R. N. Magomedov, A. V. Pripakhaylo, T. A. Maryutina, J. Supercrit. Fluids, 119, 150-158 (2017).

    Article  CAS  Google Scholar 

  16. C.A. Schneider, W. S. Rasband, K. W. Eliceiri, Nature Methods, 9, No. 7, 671-675 (2012).

    Article  CAS  Google Scholar 

  17. X, Wang. Y. Gu, Energy Fuels, 25, 5232-5241(2011).

    Article  CAS  Google Scholar 

  18. S. I. Andersen, J. G. Speight, Petroleum Science and Technology, 19 (1-2), 1-34 (2001).

    Article  CAS  Google Scholar 

  19. S. Wang, J. Liu, L. Zhang, J. Masliyah, Z. Xu, Langmuir, 26 (1),183-190 (2010).

    Article  Google Scholar 

  20. R. Perez-Hernandez, D. Mendoza-Anaya, G. Mondragon-Galicia, et al., Fuel, 82,977-982 (2003).

    Article  CAS  Google Scholar 

  21. G. A. Camacho-Bragado, P. Santiago, M. Marin-Almazo, et al., Carbon, 40, 2761-2766 (2002).

    Article  CAS  Google Scholar 

  22. M. Sedghi, L. Goual, W. Welch, J. Kubelka, J. Phys. Chem. B, 117, 5765-5776 (2013).

    Article  CAS  Google Scholar 

  23. C. Zheng, M. Zhu, D. Zhang, Energy Procedia, 105, 143-148 (2017).

    Article  CAS  Google Scholar 

Download references

The investigation was supported by a grant from the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Magomedov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No.3, pp.3— 8 , May — June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, R.N., Pripakhailo, A.V., Panyukova, D.I. et al. Structural Features of Particles of Goudron CO2 Asphaltenes Precipitated with Various Organic Diluents. Chem Technol Fuels Oils 56, 325–332 (2020). https://doi.org/10.1007/s10553-020-01141-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-020-01141-7

Key word

Navigation