Skip to main content
Log in

Is Methylphenidate Beneficial and Safe in Pharmacological Cognitive Enhancement?

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Nootropics are drugs used to either treat or benefit cognition deficits. Among this class, methylphenidate is a popular agent, which acts through indirect dopaminergic and noradrenergic agonism and, therefore, is proposed to enhance performance in catecholamine-dependent cognitive domains such as attention, memory and prefrontal cortex-dependent executive functions. However, investigation into the efficacy of methylphenidate as a cognitive enhancer has yielded variable results across all domains, leading to debate within the scientific community surrounding its off-label use in healthy individuals seeking scholaristic benefit or increased productivity. Through analysis of experimental data and methodological evaluation, it is apparent that there are dose-, task- and domain-dependent considerations surrounding the use of methylphenidate in healthy individuals, whereby tailored dose administration is likely to provide benefit on an individual basis dependent on the domain of cognition in which benefit is required. Additionally, it is apparent that there are subjective effects of methylphenidate, which may increase user productivity irrespective of cognitive benefit. Whilst there is not extensive study in healthy older adults, it is plausible that there are dose-dependent benefits to methylphenidate in older adults in selective cognitive domains that might improve quality of life and reduce fall risk. Methylphenidate appears to produce dose-dependent benefits to individuals with attention-deficit/hyperactivity disorder, but the evidence for benefit in Parkinson’s disease and schizophrenia is inconclusive. As with any off-label use of pharmacological agents, and especially regarding drugs with neuromodulatory effects, there are inherent safety concerns; epidemiological and experimental evidence suggests there are sympathomimetic, cardiovascular and addictive considerations, which might further restrict their use within certain demographics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Froestl W, Muhs A, Pfeifer A. Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors. Update 2014. J Alzheimers Dis. 2014;41(4):961–1019. https://doi.org/10.3233/jad-140228.

    Article  PubMed  Google Scholar 

  2. Sahakian B, Morein-Zamir S. Professor’s little helper. Nature. 2007;450(7173):1157–9. https://doi.org/10.1038/4501157a.

    Article  PubMed  CAS  Google Scholar 

  3. Husain M, Mehta MA. Cognitive enhancement by drugs in health and disease. Trends Cogn Sci. 2011;15(1):28–36. https://doi.org/10.1016/j.tics.2010.11.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fins JJ. Mind wars: brain research and national defense. JAMA. 2007;297(12):1379. https://doi.org/10.1001/jama.297.12.1382.

    Article  Google Scholar 

  5. Greely H, Sahakian B, Harris J, et al. Towards responsible use of cognitive-enhancing drugs by the healthy. Nanotechnol Brain Future. 2013. https://doi.org/10.1007/978-94-007-1787-9_14.

    Article  Google Scholar 

  6. Smith ME, Farah MJ. Are prescription stimulants “smart pills”? The epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals. Psychol Bull. 2011;137(5):717–41. https://doi.org/10.1037/a0023825.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maher B. Poll results: look who’s doping. Nature. 2008;452(7188):674–5. https://doi.org/10.1038/452674a.

    Article  PubMed  CAS  Google Scholar 

  8. Ragan CI, Bard I, Singh I. What should we do about student use of cognitive enhancers? An analysis of current evidence. Neuropharmacology. 2013;64:588–95. https://doi.org/10.1016/j.neuropharm.2012.06.016.

    Article  PubMed  CAS  Google Scholar 

  9. McCabe SE, Knight JR, Teter CJ, Wechsler H. Non-medical use of prescription stimulants among US college students: prevalence and correlates from a national survey. Addiction. 2005;100(1):96–106. https://doi.org/10.1111/j.1360-0443.2005.00944.x.

    Article  PubMed  Google Scholar 

  10. Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48. https://doi.org/10.1111/j.1365-201X.1971.tb10998.x.

    Article  PubMed  CAS  Google Scholar 

  11. Diamond A. Executive functions. Annu Rev Psychol. 2013;64(1):135–68. https://doi.org/10.1146/annurev-psych-113011-143750.

    Article  PubMed  Google Scholar 

  12. Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14(3):477–85. https://doi.org/10.1016/0896-6273(95)90304-6.

    Article  PubMed  CAS  Google Scholar 

  13. Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science. 1991;251(4996):947–50. https://doi.org/10.1126/science.1825731.

    Article  PubMed  CAS  Google Scholar 

  14. Brozoski T, Brown R, Rosvold H, Goldman P. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science. 1979;205(4409):929–32. https://doi.org/10.1126/science.112679.

    Article  PubMed  CAS  Google Scholar 

  15. Murphy BL, Arnsten AFT, Goldman-Rakic PS, Roth RH. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA. 1996;3(3):1325–9. https://doi.org/10.1073/pnas.93.3.1325.

    Article  Google Scholar 

  16. Zahrt J, Taylor JR, Mathew RG, Arnsten AF. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci. 1997;17(21):8528–35.

    Article  CAS  Google Scholar 

  17. Kroener S, Chandler JL, Phillips PEM, Seamans JK. Dopamine modulates persistent synaptic activity and enhances the signal-to-noise ratio in the prefrontal cortex. PLoS One. 2009;4(8):e6507. https://doi.org/10.1371/journal.pone.0006507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cools R, D’Esposito M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 2011;9(12):e113–25. https://doi.org/10.1016/j.biopsych.2011.03.028.

    Article  CAS  Google Scholar 

  19. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998;94(1):127–52. https://doi.org/10.1016/S0166-4328(97)00175-7.

    Article  PubMed  CAS  Google Scholar 

  20. Foote SL, Aston-Jones G, Bloom FE. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci USA. 1980;77(5):3033–7. https://doi.org/10.1073/pnas.77.5.3033.

    Article  PubMed  CAS  Google Scholar 

  21. Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1981;1(8):876–86. https://doi.org/10.1523/jneurosci.4553-14.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273–6. https://doi.org/10.1126/science.2999977.

    Article  PubMed  CAS  Google Scholar 

  23. Langer SZ. Presynaptic regulation of catecholamine release. Biochem Pharmacol. 1974;23(13):1793–800. https://doi.org/10.1016/0006-2952(74)90187-7.

    Article  PubMed  CAS  Google Scholar 

  24. Cai JX, Ma Y, Xu L, Hu X. Reserpine impairs spatial working memory performance in monkeys: reversal by the α2-adrenergic agonist clonidine. Brain Res. 1993;614(1–2):191–6. https://doi.org/10.1016/0006-8993(93)91034-p.

    Article  PubMed  CAS  Google Scholar 

  25. Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AFT. A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in the prefrontal cortex. Biol Psychiatry. 1999;46(9):1266–74. https://doi.org/10.1016/S0006-3223(99)00138-9.

    Article  PubMed  CAS  Google Scholar 

  26. Ramos BP, Colgan L, Nou E, Ovadia S, Wilson SR, Arnsten AFT. The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol Psychiatry. 2005;58(11):894–900. https://doi.org/10.1016/j.biopsych.2005.05.022.

    Article  PubMed  CAS  Google Scholar 

  27. Scahill L, Carroll D, Burke K. Methylphenidate: mechanism of action and clinical update. J Child Adolesc Psychiatr Nurs. 2004;17(2):85–6. https://doi.org/10.1111/j.1744-6171.2004.00085.x.

    Article  PubMed  Google Scholar 

  28. Volkow ND, Wang G, Fowler JS, et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci. 2001;21(2):RC121. https://doi.org/10.1523/jneurosci.21-02-j0001.2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wall SC, Gu H, Rudnick G. Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol. 1995;47:544–50.

    PubMed  CAS  Google Scholar 

  30. Cahill L, McGaugh JL. A novel demonstration of enhanced memory associated with emotional arousal. Conscious Cogn. 1995;4(4):410–21. https://doi.org/10.1006/ccog.1995.1048.

    Article  PubMed  CAS  Google Scholar 

  31. Brignell CM, Rosenthal J, Curran HV. Pharmacological manipulations of arousal and memory for emotional material: effects of a single dose of methylphenidate or lorazepam. J Psychopharmacol. 2007;21(7):673–83. https://doi.org/10.1177/0269881107077351.

    Article  PubMed  CAS  Google Scholar 

  32. Camp-Bruno JA, Herting RL. Cognitive effects of milacemide and methylphenidate in healthy young adults. Psychopharmacology (Berl). 1994;115(1–2):46–52. https://doi.org/10.1007/BF02244750.

    Article  CAS  Google Scholar 

  33. Linssen AMW, Sambeth A, Vuurman EFPM, Riedel WJ. Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies. Int J Neuropsychopharmacol. 2014;17(6):961–77. https://doi.org/10.1017/S1461145713001594.

    Article  PubMed  CAS  Google Scholar 

  34. Klinge C, Shuttleworth C, Muglia P, Nobre AC, Harmer CJ, Murphy SE. Methylphenidate enhances implicit learning in healthy adults. J Psychopharmacol. 2018;32(1):70–80. https://doi.org/10.1177/0269881117731472.

    Article  CAS  Google Scholar 

  35. Dodds CM, Müller U, Clark L, Van Loon A, Cools R, Robbins TW. Methylphenidate has differential effects on blood oxygenation level-dependent signal related to cognitive subprocesses of reversal learning. J Neurosci. 2008;28(23):5976–82. https://doi.org/10.1523/JNEUROSCI.1153-08.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wetzel CD, Squire LR, Janowsky DS. Methylphenidate impairs learning and memory in normal adults. Behav Neural Biol. 1981;31(4):413–24. https://doi.org/10.1016/S0163-1047(81)91481-3.

    Article  PubMed  CAS  Google Scholar 

  37. Clatworthy PL, Lewis SJG, Brichard L, et al. Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci. 2009;29(15):4690–6. https://doi.org/10.1523/JNEUROSCI.3266-08.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Divac I, Rosvold HE, Szwarcbart MK. Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol. 1967;63(2):184–90. https://doi.org/10.1037/h0024348.

    Article  PubMed  CAS  Google Scholar 

  39. Linssen AMW, Vuurman EFPM, Sambeth A, Riedel WJ. Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers. Psychopharmacology (Berl). 2012;221(4):611–9. https://doi.org/10.1007/s00213-011-2605-9.

    Article  CAS  Google Scholar 

  40. Bray CL, Cahill KS, Oshier JT, et al. Methylphenidate does not improve cognitive function in healthy sleep-deprived young adults. J Investig Med. 2004;52(3):192–201.

    Article  CAS  Google Scholar 

  41. Baddeley A. Working memory. Science. 1992;255(5044):556–9. https://doi.org/10.4249/scholarpedia.3015.

    Article  PubMed  CAS  Google Scholar 

  42. Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW. Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci. 2000;20(6):RC65.

    Article  CAS  Google Scholar 

  43. Ramasubbu R, Singh H, Zhu H, Dunn JF. Methylphenidate-mediated reduction in prefrontal hemodynamic responses to working memory task: a functional near-infrared spectroscopy study. Hum Psychopharmacol Clin Exp. 2012;27(6):615–21. https://doi.org/10.1002/hup.2258.

    Article  CAS  Google Scholar 

  44. Cooper NJ, Keage H, Hermens D, et al. The dose-dependent effect of methylphenidate on performance, cognition and psychophysiology. J Integr Neurosci. 2005;4(1):123–44. https://doi.org/10.1142/S0219635205000744.

    Article  PubMed  Google Scholar 

  45. Strauss J, Lewis JL, Klorman R, Peloquin L-J, Perlmutter RA, Salzman LF. Effects of methylphenidate on young adults’ performance and event-related potentials in a vigilance and a paired-associates learning test. Psychophysiology. 1984;21(6):609–21. https://doi.org/10.1111/j.1469-8986.1984.tb00247.x.

    Article  PubMed  CAS  Google Scholar 

  46. Tomasi D, Volkow ND, Wang GJ, et al. Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. NeuroImage. 2011;54(4):3101–10. https://doi.org/10.1016/j.neuroimage.2010.10.060.

    Article  PubMed  CAS  Google Scholar 

  47. Agay N, Yechiam E, Carmel Z, Levkovitz Y. Non-specific effects of methylphenidate (Ritalin) on cognitive ability and decision-making of ADHD and healthy adults. Psychopharmacology (Berl). 2010;210(4):511–9. https://doi.org/10.1007/s00213-010-1853-4.

    Article  CAS  Google Scholar 

  48. Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW. Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology (Berl). 1997;131(2):196–206. https://doi.org/10.1007/s002130050284.

    Article  CAS  Google Scholar 

  49. Drijgers RL, Verhey FRJ, Tissingh G, Van Domburg PHMF, Aalten P, Leentjens AFG. The role of the dopaminergic system in mood, motivation and cognition in Parkinson’s disease: a double blind randomized placebo-controlled experimental challenge with pramipexole and methylphenidate. J Neurol Sci. 2012;320(1–2):121–6. https://doi.org/10.1016/j.jns.2012.07.015.

    Article  PubMed  CAS  Google Scholar 

  50. Batistela S, Bueno OFA, Vaz LJ, Galduróz JCF. Methylphenidate as a cognitive enhancer in healthy young people. Dement Neuropsychol. 2016;10(2):134–42. https://doi.org/10.1590/s1980-5764-2016dn1002009.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ. Relative lack of cognitive effects of methylphenidate in elderly male volunteers. Psychopharmacology (Berl). 2003;168(4):455–64. https://doi.org/10.1007/s00213-003-1457-.3.

    Article  CAS  Google Scholar 

  52. Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist. 2014;20(2):150–9. https://doi.org/10.1177/1073858413494269.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ter Huurne N, Fallon SJ, Van Schouwenburg M, et al. Methylphenidate alters selective attention by amplifying salience. Psychopharmacology (Berl). 2015;232(23):4317–23. https://doi.org/10.1007/s00213-015-4059-y.

    Article  CAS  Google Scholar 

  54. Oken BS, Kishiyama SS, Salinsky MC. Pharmacologically induced changes in arousal: effects on behavioral and electrophysiologic measures of alertness and attention. Electroencephalogr Clin Neurophysiol. 1995;95(5):359–71. https://doi.org/10.1016/0013-4694(95)00124-H.

    Article  PubMed  CAS  Google Scholar 

  55. Finke K, Dodds CM, Bublak P, et al. Effects of modafinil and methylphenidate on visual attention capacity: a TVA-based study. Psychopharmacology (Berl). 2010;210(3):317–29. https://doi.org/10.1007/s00213-010-1823-x.

    Article  CAS  Google Scholar 

  56. Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M. Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci. 2008;28(5):1208–12. https://doi.org/10.1523/JNEUROSCI.4475-07.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Franke AG, Gränsmark P, Agricola A, et al. Methylphenidate, modafinil, and caffeine for cognitive enhancement in chess: a double-blind, randomised controlled trial. Eur Neuropsychopharmacol. 2017;27(3):248–60. https://doi.org/10.1016/j.euroneuro.2017.01.006.

    Article  PubMed  CAS  Google Scholar 

  58. Volkow ND, Fowler JS, Wang GJ, et al. Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task. PLoS One. 2008;3(4):e2017. https://doi.org/10.1371/journal.pone.0002017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Baas M, Boot N, van Gaal S, de Dreu CKW, Cools R. Methylphenidate does not affect convergent and divergent creative processes in healthy adults. NeuroImage. 2020. https://doi.org/10.1016/j.neuroimage.2019.116279.

    Article  PubMed  Google Scholar 

  60. Babkoff H, Kelly TL, Matteson LT, et al. Pemoline and methylphenidate: interaction with mood, sleepiness, and cognitive performance during 64 hours of sleep deprivation. Mil Psychol. 1992. https://doi.org/10.1207/s15327876mp0404_3.

    Article  Google Scholar 

  61. Roehrs T, Papineau K, Rosenthal L, Roth T. Sleepiness and the reinforcing and subjective effects of methylphenidate. Exp Clin Psychopharmacol. 1999;7(2):145–50. https://doi.org/10.1037/1064-1297.7.2.145.

    Article  PubMed  CAS  Google Scholar 

  62. Volkow ND, Wang GJ, Fowler JS, et al. Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry. 2004. https://doi.org/10.1176/appi.ajp.161.7.1173.

    Article  PubMed  Google Scholar 

  63. Flatt T. A new definition of aging? Front Genet. 2012. https://doi.org/10.3389/fgene.2012.00148.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29(4):737–52. https://doi.org/10.1016/j.cger.2013.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Carlson MC, Xue QL, Zhou J, Fried LP. Executive decline and dysfunction precedes declines in memory: the Women’s Health and Aging Study II. J Gerontol A Biol Sci Med Sci. 2009;64(1):110–7. https://doi.org/10.1093/gerona/gln008.

    Article  PubMed  Google Scholar 

  66. Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010;16(5):754–60. https://doi.org/10.1017/S1355617710000706.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Salthouse TA, Fristoe NM, Lineweaver TT, Coon VE. Aging of attention: does the ability to divide decline? Mem Cognit. 1995;23(1):59–71. https://doi.org/10.3758/BF03210557.

    Article  PubMed  CAS  Google Scholar 

  68. Carlson MC, Hasher L, Zacks RT, Connelly SL. Aging, distraction, and the benefits of predictable location. Psychol Aging. 1995;10(3):427–36. https://doi.org/10.1037//0882-7974.10.3.427.

    Article  PubMed  CAS  Google Scholar 

  69. Salthouse TA, Mitchell DR, Skovronek E, Babcock RL. Effects of adult age and working memory on reasoning and spatial abilities. J Exp Psychol Learn Mem Cogn. 1989;15(3):507–16. https://doi.org/10.1037/0278-7393.15.3.507.

    Article  PubMed  CAS  Google Scholar 

  70. Oosterman JM, Vogels RLC, Van Harten B, et al. Assessing mental flexibility: neuroanatomical and neuropsychological correlates of the trail making test in elderly people. Clin Neuropsychol. 2010;24(2):203–19. https://doi.org/10.1080/13854040903482848.

    Article  PubMed  Google Scholar 

  71. Wecker NS, Kramer JH, Wisniewski A, Delis DC, Kaplan E. Age effects on executive ability. Neuropsychology. 2000;14(3):409–14. https://doi.org/10.1037//0894-4105.14.3.409.

    Article  PubMed  CAS  Google Scholar 

  72. Svennerholm L, Boström K, Jungbjer B. Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol. 1997;94(4):345–52. https://doi.org/10.1007/s004010050717.

    Article  PubMed  CAS  Google Scholar 

  73. Raz N, Gunning FM, Head D, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex. 1997;7(May):268–82.

    Article  CAS  Google Scholar 

  74. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci. 2003;23(8):3295–301. https://doi.org/10.1523/JNEUROSCI.23-08-03295.2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mukherjee J, Christian BT, Dunigan KA, et al. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse. 2002;46(3):170–88. https://doi.org/10.1002/syn.10128.

    Article  PubMed  CAS  Google Scholar 

  76. Nyberg L, Bäckman L. Cognitive aging: a view from brain imaging. In: Dixon R, Bäckman L, Nilsson LG, editors. New frontiers in cognitive aging. Oxford: Oxford University Press; 2004. p. 135–59. https://doi.org/10.1093/acprof:oso/9780198525691.003.0007.

    Chapter  Google Scholar 

  77. Müller U, Suckling J, Zelaya F, et al. Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes. Psychopharmacology (Berl). 2005. https://doi.org/10.1007/s00213-005-2264-9.

    Article  Google Scholar 

  78. Ben-Itzhak R, Giladi N, Gruendlinger L, Hausdorff JM. Can methylphenidate reduce fall risk in community-living older adults? A double-blind, single-dose cross-over study. J Am Geriatr Soc. 2008. https://doi.org/10.1111/j.1532-5415.2007.01623.x.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Izquierdo I, Bevilaqua LR, Rossato JI, Lima RH, Medina JH, Cammarota M. Age-dependent and age-independent human memory persistence is enhanced by delayed posttraining methylphenidate administration. Proc Natl Acad Sci USA. 2008. https://doi.org/10.1073/pnas.0810650105.

    Article  PubMed  Google Scholar 

  80. Ble A, Volpato S, Zuliani G, et al. Executive function correlates with walking speed in older persons: the InCHIANTI study. J Am Geriatr Soc. 2005. https://doi.org/10.1111/j.1532-5415.2005.53157.x.

    Article  PubMed  Google Scholar 

  81. Springer S, Giladi N, Peretz C, Yogev G, Simon ES, Hausdorff JM. Dual-tasking effects on gait variability: het role of aging, falls, and executive function. Mov Disord. 2006. https://doi.org/10.1002/mds.20848.

    Article  PubMed  Google Scholar 

  82. Hausdorff JM, Yogev G, Springer S, Simon ES, Giladi N. Walking is more like catching than tapping: gait in the elderly as a complex cognitive task. Exp Brain Res. 2005. https://doi.org/10.1007/s00221-005-2280-3.

    Article  PubMed  Google Scholar 

  83. Verghese J, Buschke H, Viola L, et al. Validity of divided attention tasks in predicting falls in older individuals: a preliminary study. J Am Geriatr Soc. 2002. https://doi.org/10.1046/j.1532-5415.2002.50415.x.

    Article  PubMed  Google Scholar 

  84. Prendergast MA, Jackson WJ, Terry AV, et al. Age-related differences in distractibility and response to methylphenidate in monkeys. Cereb Cortex. 1998;8(2):164–72. https://doi.org/10.1093/cercor/8.2.164.

    Article  PubMed  CAS  Google Scholar 

  85. Bhattacharya SE, Shumsky JS, Waterhouse BD. Attention enhancing effects of methylphenidate are age-dependent. Exp Gerontol. 2015;61:1–7. https://doi.org/10.1016/j.exger.2014.11.006.

    Article  PubMed  CAS  Google Scholar 

  86. Sahakian BJ. What do experts think we should do to achieve brain health? Neurosci Biobehav Rev. 2014. https://doi.org/10.1016/j.neubiorev.2014.04.002.

    Article  PubMed  Google Scholar 

  87. Gustavsson A, Svensson M, Jacobi F, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011. https://doi.org/10.1016/j.euroneuro.2011.08.008.

    Article  PubMed  Google Scholar 

  88. Biederman J, Faraone S, Milberger S, et al. A prospective 4-year follow-up study of attention-deficit hyperactivity and related disorders. Arch Gen Psychiatry. 1996;53(5):437–46. https://doi.org/10.1001/archpsyc.1996.01830050073012.

    Article  PubMed  CAS  Google Scholar 

  89. Heiligenstein E, Guenther G, Levy A, Savino F, Fulwiler J. Psychological and academic functioning in college students with attention deficit hyperactivity disorder. J Am Coll Health. 1999;47(4):181–5. https://doi.org/10.1080/07448489909595644.

    Article  PubMed  CAS  Google Scholar 

  90. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  91. Cherkasova MV, Hechtman L. Neuroimaging in attention-deficit hyperactivity disorder: beyond the frontostriatal circuitry. Can J Psychiatry. 2009;54(10):651–64. https://doi.org/10.1177/070674370905401002.

    Article  PubMed  Google Scholar 

  92. Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67(5):728–34. https://doi.org/10.1016/j.neuron.2010.08.040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Dickstein SG, Bannon K, Xavier Castellanos F, Milham MP. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry Allied Discip. 2006;47(10):1051–62. https://doi.org/10.1111/j.1469-7610.2006.01671.x.

    Article  Google Scholar 

  94. Shaw P, Lerch J, Greenstein D, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63(5):540–9. https://doi.org/10.1001/archpsyc.63.5.540.

    Article  PubMed  Google Scholar 

  95. Willcutt EG, Doyle AE, Nigg JT, Faraone S, Pennington BF. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 2005;57(11):1336–46. https://doi.org/10.1016/j.biopsych.2005.02.006.

    Article  PubMed  Google Scholar 

  96. World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992.

    Google Scholar 

  97. Bradley C. The behavior of children receiving benzedrine. Am J Psychiatry. 1937;94(3):577–85. https://doi.org/10.1176/appi.ajp.94.3.577.

    Article  Google Scholar 

  98. Elia J, Borcherding BG, Rapoport JL, Keysor CS. Methylphenidate and dextroamphetamine treatments of hyperactivity: are there true nonresponders? Psychiatry Res. 1991;36(2):141–55. https://doi.org/10.1016/0165-1781(91)90126-A.

    Article  PubMed  CAS  Google Scholar 

  99. Chan E, Fogler JM, Hammerness PG. Treatment of attention-deficit/hyperactivity disorder in adolescents: a systematic review. JAMA. 2016. https://doi.org/10.1001/jama.2016.5453.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Advokat C, Scheithauer M. Attention-deficit hyperactivity disorder (ADHD) stimulant medications as cognitive enhancers. Front Neurosci. 2013. https://doi.org/10.3389/fnins.2013.00082.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kempton S, Vance A, Maruff P, Luk E, Costin J, Pantelis C. Executive function and attention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med. 1999;29(3):527–38. https://doi.org/10.1017/S0033291799008338.

    Article  PubMed  CAS  Google Scholar 

  102. Mehta MA, Goodyer IM, Sahakian BJ. Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. J Child Psychol Psychiatry Allied Discip. 2004;45(2):293–305. https://doi.org/10.1111/j.1469-7610.2004.00221.x.

    Article  Google Scholar 

  103. Strand MT, Hawk LW, Bubnik M, Shiels K, Pelham WE, Waxmonsky JG. Improving working memory in children with attention-deficit/hyperactivity disorder: the separate and combined effects of incentives and stimulant medication. J Abnorm Child Psychol. 2012. https://doi.org/10.1007/s10802-012-9627-6.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yarmolovsky J, Szwarc T, Schwartz M, Tirosh E, Geva R. Hot executive control and response to a stimulant in a double-blind randomized trial in children with ADHD. Eur Arch Psychiatry Clin Neurosci. 2017. https://doi.org/10.1007/s00406-016-0683-8.

    Article  PubMed  Google Scholar 

  105. Maul J, Advokat C. Stimulant medications for attention-deficit/hyperactivity disorder (ADHD) improve memory of emotional stimuli in ADHD-diagnosed college students. Pharmacol Biochem Behav. 2013. https://doi.org/10.1016/j.pbb.2013.01.021.

    Article  PubMed  Google Scholar 

  106. Bolfer C, Pacheco SP, Tsunemi MH, Carreira WS, Casella BB, Casella EB. Attention-deficit/hyperactivity disorder: the impact of methylphenidate on working memory, inhibition capacity and mental flexibility. Arq Neuropsiquiatr. 2017. https://doi.org/10.1590/0004-282x20170030.

    Article  PubMed  Google Scholar 

  107. Rubio Morell B, Hernández Expósito S. Differential long-term medication impact on executive function and delay aversion in ADHD. Appl Neuropsychol Child. 2019. https://doi.org/10.1080/21622965.2017.1407653.

    Article  PubMed  Google Scholar 

  108. Orban SA, Karamchandani TA, Tamm L, et al. Attention-deficit/hyperactivity disorder-related deficits and psychostimulant medication effects on comprehension of audiovisually presented educational material in children. J Child Adolesc Psychopharmacol. 2018. https://doi.org/10.1089/cap.2018.0006.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hawk LW, Fosco WD, Colder CR, Waxmonsky JG, Pelham WE, Rosch KS. How do stimulant treatments for ADHD work? Evidence for mediation by improved cognition. J Child Psychol Psychiatry Allied Discip. 2018. https://doi.org/10.1111/jcpp.12917.

    Article  Google Scholar 

  110. Kortekaas-Rijlaarsdam AF, Luman M, Sonuga-Barke E, Bet P, Oosterlaan J. Methylphenidate-related improvements in math performance cannot be explained by better cognitive functioning or higher academic motivation: evidence from a randomized controlled trial. J Atten Disord. 2017. https://doi.org/10.1177/1087054717713640.

    Article  PubMed  Google Scholar 

  111. Coghill DR, Seth S, Pedroso S, Usala T, Currie J, Gagliano A. Effects of methylphenidate on cognitive functions in children and adolescents with attention-deficit/hyperactivity disorder: evidence from a systematic review and a meta-analysis. Biol Psychiatry. 2014. https://doi.org/10.1016/j.biopsych.2013.10.005.

    Article  PubMed  Google Scholar 

  112. Rubia K, Alegria AA, Cubillo AI, Smith AB, Brammer MJ, Radua J. Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Biol Psychiatry. 2014. https://doi.org/10.1016/j.biopsych.2013.10.016.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Abikoff H, Hechtman L, Klein RG, et al. Symptomatic improvement in children with ADHD treated with long-term methylphenidate and multimodal psychosocial treatment. J Am Acad Child Adolesc Psychiatry. 2004. https://doi.org/10.1097/01.chi.0000128791.10014.ac.

    Article  PubMed  Google Scholar 

  114. Turner DC, Blackwell AD, Dowson JH, McLean A, Sahakian BJ. Neurocognitive effects of methylphenidate in adult attention-deficit/hyperactivity disorder. Psychopharmacology (Berl). 2005;178(2–3):286–95. https://doi.org/10.1007/s00213-004-1993-5.

    Article  CAS  Google Scholar 

  115. Aron AR, Dowson JH, Sahakian BJ, Robbins TW. Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2003;54(12):1465–8. https://doi.org/10.1016/S0006-3223(03)00609-7.

    Article  PubMed  CAS  Google Scholar 

  116. Tucha O, Mecklinger L, Laufkötter R, Klein HE, Walitza S, Lange KW. Methylphenidate-induced improvements of various measures of attention in adults with attention deficit hyperactivity disorder. J Neural Transm. 2006. https://doi.org/10.1007/s00702-005-0437-7.

    Article  PubMed  Google Scholar 

  117. Fuermaier ABM, Tucha L, Koerts J, et al. Effects of methylphenidate on memory functions of adults with ADHD. Appl Neuropsychol. 2017. https://doi.org/10.1080/23279095.2015.1124108.

    Article  Google Scholar 

  118. Low AM, Le Sommer J, Vangkilde S, et al. Delay aversion and executive functioning in adults with attention-deficit/hyperactivity disorder: before and after stimulant treatment. Int J Neuropsychopharmacol. 2018. https://doi.org/10.1093/ijnp/pyy070.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kubas HA, Backenson EM, Wilcox G, Piercy JC, Hale JB. The effects of methylphenidate on cognitive function in children with attention-deficit/hyperactivity disorder. Postgrad Med. 2012. https://doi.org/10.3810/pgm.2012.09.2592.

    Article  PubMed  Google Scholar 

  120. Fosco WD, Rosch KS, Waxmonsky JG, Pelham WE, Hawk LW. Baseline performance moderates stimulant effects on cognition in youth with ADHD. Exp Clin Psychopharmacol. 2020. https://doi.org/10.1037/pha0000374.

    Article  PubMed  Google Scholar 

  121. Boonstra AM, Kooij JJS, Oosterlaan J, Sergeant JA, Buitelaar JK. Does methylphenidate improve inhibition and other cognitive abilities in adults with childhood-onset ADHD? J Clin Exp Neuropsychol. 2005. https://doi.org/10.1080/13803390490515757.

    Article  PubMed  Google Scholar 

  122. Coghill DR, Rhodes SM, Matthews K. The neuropsychological effects of chronic methylphenidate on drug-naive boys with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007. https://doi.org/10.1016/j.biopsych.2006.12.030.

    Article  PubMed  Google Scholar 

  123. Bron TI, Bijlenga D, Marije Boonstra A, et al. OROS-methylphenidate efficacy on specific executive functioning deficits in adults with ADHD: a randomized, placebo-controlled cross-over study. Eur Neuropsychopharmacol. 2014. https://doi.org/10.1016/j.euroneuro.2014.01.007.

    Article  PubMed  Google Scholar 

  124. Coghill DR, Seth S, Matthews K. A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: advancing beyond the three-pathway models. Psychol Med. 2014. https://doi.org/10.1017/S0033291713002547.

    Article  PubMed  Google Scholar 

  125. Hale JB, Reddy LA, Semrud-Clikeman M, et al. Executive impairment determines ADHD medication response: implications for academic achievement. J Learn Disabil. 2011. https://doi.org/10.1177/0022219410391191.

    Article  PubMed  Google Scholar 

  126. Meireles J, Massano J. Cognitive impairment and dementia in Parkinson’s disease: clinical features, diagnosis, and management. Front Neurol. 2012. https://doi.org/10.3389/fneur.2012.00088.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Galvan A, Wichmann T. Pathophysiology of Parkinsonism. Clin Neurophysiol. 2008;119(7):1459–74. https://doi.org/10.1016/j.clinph.2008.03.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Pillon B, Dubois B, Lhermitte F, Agid Y. Heterogeneity of cognitive impairment in progressive supranuclear palsy, Parkinson’s disease, and Alzheimer’s disease. Neurology. 1986;36(9):1179–85.

    Article  CAS  Google Scholar 

  129. Pillon B, Dubois B, Agid Y. Severity and specificity of cognitive impairment in Alzheimer’s, Huntington’s, and Parkinson’s diseases and progressive supranuclear palsy. Ann N Y Acad Sci. 1991;640:224–7. https://doi.org/10.1212/WNL.41.5.634.

    Article  PubMed  CAS  Google Scholar 

  130. Litvan I, Mohr E, Williams J, Gomez C, Chase TN. Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1991;54(1):25–9. https://doi.org/10.1136/jnnp.54.1.25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Morris RG, Downes JJ, Sahakian BJ, Evenden JL, Heald A, Robbins TW. Planning and spatial working memory in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51(6):757–66. https://doi.org/10.1136/jnnp.51.6.757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Owen AM, James M, Leigh PN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain. 1992;115(6):1727–51. https://doi.org/10.1093/brain/115.6.1727.

    Article  PubMed  Google Scholar 

  133. Weintraub D, Tröster AI, Marras C, Stebbins G. Initial cognitive changes in Parkinson’s disease. Mov Disord. 2018. https://doi.org/10.1002/mds.27330.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM. l-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology (Berl). 1992;107(2–3):394–404. https://doi.org/10.1007/BF02245167.

    Article  CAS  Google Scholar 

  135. Murakami H, Momma Y, Nohara T, et al. Improvement in language function correlates with gait improvement in drug-naïve Parkinson’s disease patients taking dopaminergic medication. J Parkinsons Dis. 2016. https://doi.org/10.3233/JPD-150702.

    Article  PubMed  Google Scholar 

  136. Brusa L, Pavino V, Massimetti MC, Bove R, Iani C, Stanzion P. The effect of dopamine agonists on cognitive functions in non-demented early-mild Parkinson’s disease patients. Funct Neurol. 2013. https://doi.org/10.11138/FNeur/2013.28.1.007.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain. 1996;119(Pt 2):585–91. https://doi.org/10.1093/brain/119.2.585.

    Article  PubMed  Google Scholar 

  138. Cools R. Dopaminergic modulation of cognitive function-implications for l-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev. 2006;30(1):1–23. https://doi.org/10.1016/j.neubiorev.2005.03.024.

    Article  PubMed  CAS  Google Scholar 

  139. Swainson R, Rogers RD, Sahakian BJ, Summers BA, Polkey CE, Robbins TW. Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia. 2000;38(5):596–612. https://doi.org/10.1016/S0028-3932(99)00103-7.

    Article  PubMed  CAS  Google Scholar 

  140. Cools R, Barker RA, Sahakian BJ, Robbins TW. l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia. 2003;41(11):1431–41. https://doi.org/10.1016/S0028-3932(03)00117-9.

    Article  PubMed  Google Scholar 

  141. Cools R. Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex. 2001. https://doi.org/10.1093/cercor/11.12.1136.

    Article  PubMed  Google Scholar 

  142. Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol. 2003. https://doi.org/10.1001/archneur.60.12.1745.

    Article  PubMed  Google Scholar 

  143. Tiraboschi P, Hansen LA, Alford M, et al. Cholinergic dysfunction in diseases with LEWY bodies. Neurology. 2000. https://doi.org/10.1212/wnl.54.2.407.

    Article  PubMed  Google Scholar 

  144. Wang HF, Yu JT, Tang SW, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry. 2015. https://doi.org/10.1136/jnnp-2014-307659.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Litvinenko IV, Odinak MM, Mogil’naya VI, Emelin AYU. Efficacy and safety of galantamine (reminyl) for dementia in patients with Parkinson’s disease (an open controlled trial). Neurosci Behav Physiol. 2008. https://doi.org/10.1007/s11055-008-9077-3.

    Article  PubMed  Google Scholar 

  146. Mamikonyan E, Xie SX, Melvin E, Weintraub D. Rivastigmine for mild cognitive impairment in Parkinson disease: a placebo-controlled study. Mov Disord. 2015. https://doi.org/10.1002/mds.26236.

    Article  PubMed  Google Scholar 

  147. Li Z, Yu Z, Zhang J, et al. Impact of rivastigmine on cognitive dysfunction and falling in Parkinson’s disease patients. Eur Neurol. 2015. https://doi.org/10.1159/000438824.

    Article  PubMed  Google Scholar 

  148. Litvinenko IV, Odinak MM, Mogil’naya VI, Perstnev SV. Use of memantine (akatinol) for the correction of cognitive impairments in Parkinson’s disease complicated by dementia. Neurosci Behav Physiol. 2010. https://doi.org/10.1007/s11055-009-9244-1.

    Article  PubMed  Google Scholar 

  149. Pillon B, Dubois B, Cusimano G, Bonnet AM, Lhermitte F, Agid Y. Does cognitive impairment in Parkinson’s disease result from non-dopaminergic lesions? J Neurol Neurosurg Psychiatry. 1989;52(2):201–6. https://doi.org/10.1136/jnnp.52.2.201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol. 2003;60(3):337–41. https://doi.org/10.1001/archneur.60.3.337.

    Article  PubMed  Google Scholar 

  151. Marsh L, Biglan K, Gerstenhaber M, Williams JR. Atomoxetine for the treatment of executive dysfunction in Parkinson’s disease: a pilot open-label study. Mov Disord. 2009;24(2):277–82. https://doi.org/10.1002/mds.22307.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Devos D, Moreau C, Delval A, Dujardin K, Defebvre L, Bordet R. Methylphenidate: a treatment for Parkinson’s disease? CNS Drugs. 2013;27(1):1–14. https://doi.org/10.1007/s40263-012-0017-y.

    Article  PubMed  CAS  Google Scholar 

  153. Fox SH, Lang AE. Levodopa-related motor complications: phenomenology. Mov Disord. 2008;23(Suppl. 3):S509–14. https://doi.org/10.1002/mds.22021.

    Article  PubMed  Google Scholar 

  154. Camicioli R, Lea E, Nutt JG, Sexton G, Oken BS. Methylphenidate increases the motor effects of l-dopa in Parkinson’s disease: a pilot study. Clin Neuropharmacol. 2001;24(4):208–13. https://doi.org/10.1097/00002826-200107000-00003.

    Article  PubMed  CAS  Google Scholar 

  155. Auriel E, Hausdorff JM, Herman T, Simon ES, Giladi N. Effects of methylphenidate on cognitive function and gait in patients with Parkinson’s disease: a pilot study. Clin Neuropharmacol. 2006;29(1):15–7. https://doi.org/10.1097/00002826-200601000-00005.

    Article  PubMed  CAS  Google Scholar 

  156. Devos D, Krystkowiak P, Clement F, et al. Improvement of gait by chronic, high doses of methylphenidate in patients with advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(5):470–5. https://doi.org/10.1136/jnnp.2006.100016.

    Article  PubMed  CAS  Google Scholar 

  157. Delval A, Moreau C, Bleuse S, et al. Gait and attentional performance in freezers under methylphenidate. Gait Posture. 2015;41(2):384–8. https://doi.org/10.1016/j.gaitpost.2014.10.022.

    Article  PubMed  CAS  Google Scholar 

  158. van Os J, Kapur S. Schizophrenia. Lancet. 2009. https://doi.org/10.1016/S0140-6736(09)60995-8.

    Article  PubMed  Google Scholar 

  159. Liddle PF. The symptoms of chronic schizophrenia: a re-examination of the positive-negative dichotomy. Br J Psychiatry. 1987. https://doi.org/10.1192/bjp.151.2.145.

    Article  PubMed  Google Scholar 

  160. Andreasen NC, Flashman L, Flaum M, et al. Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA. 1994. https://doi.org/10.1001/jama.1994.03520220057031.

    Article  PubMed  Google Scholar 

  161. Pogarell O, Koch W, Karch S, et al. Dopaminergic neurotransmission in patients with schizophrenia in relation to positive and negative symptoms. Pharmacopsychiatry. 2012. https://doi.org/10.1055/s-0032-1306313.

    Article  PubMed  Google Scholar 

  162. da Silva Alves F, Figee M, van Avamelsvoort T, Veltman D, de Haan L. The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication. Psychopharmacol Bull. 2008. https://doi.org/10.1016/S0920-9964(08)70291-3.

    Article  PubMed  Google Scholar 

  163. Wright IC, Rabe-Hesketh S, Woodruff PWR, David AS, Murray RM, Bullmore ET. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry. 2000. https://doi.org/10.1176/ajp.157.1.16.

    Article  PubMed  Google Scholar 

  164. Andreasen NC. Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science. 1997. https://doi.org/10.1126/science.275.5306.1586.

    Article  PubMed  Google Scholar 

  165. Buchsbaum MS, Someya T, Teng CY, et al. PET and MRI of the thalamus in never-medicated patients with schizophrenia. Am J Psychiatry. 1996. https://doi.org/10.1176/ajp.153.2.191.

    Article  PubMed  Google Scholar 

  166. Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Arch Gen Psychiatry. 1986. https://doi.org/10.1001/archpsyc.1986.01800020020004.

    Article  PubMed  Google Scholar 

  167. Barnett JH, Robbins TW, Leeson VC, Sahakian BJ, Joyce EM, Blackwell AD. Assessing cognitive function in clinical trials of schizophrenia. Neurosci Biobehav Rev. 2010. https://doi.org/10.1016/j.neubiorev.2010.01.012.

    Article  PubMed  Google Scholar 

  168. Bilder RM, Lieberman JA, Kim Y, Alvir JM, Reiter G. Methylphenidate and neuroleptic effects on oral word production in schizophrenia. Neuropsychiatry Neuropsychol Behav Neurol. 1992;5(4):262–71.

    Google Scholar 

  169. Szeszko PR, Bilder RM, Dunlop JA, Walder DJ, Lieberman JA. Longitudinal assessment of methylphenidate effects on oral word production and symptoms in first-episode schizophrenia at acute and stabilized phases. Biol Psychiatry. 1999. https://doi.org/10.1016/S0006-3223(98)00258-3.

    Article  PubMed  Google Scholar 

  170. Barch DM, Carter CS. Amphetamine improves cognitive function in medicated individuals with schizophrenia and in healthy volunteers. Schizophr Res. 2005. https://doi.org/10.1016/j.schres.2004.12.019.

    Article  PubMed  Google Scholar 

  171. Pietrzak RH, Snyder PJ, Maruff P. Use of an acute challenge with d-amphetamine to model cognitive improvement in chronic schizophrenia. Hum Psychopharmacol. 2010. https://doi.org/10.1002/hup.1118.

    Article  PubMed  Google Scholar 

  172. Solmi M, Fornaro M, Toyoshima K, et al. Systematic review and exploratory meta-analysis of the efficacy, safety, and biological effects of psychostimulants and atomoxetine in patients with schizophrenia or schizoaffective disorder. CNS Spectr. 2019. https://doi.org/10.1017/S1092852918001050.

    Article  PubMed  Google Scholar 

  173. Jody D, Lieberman JA, Geisler S, Szymanski S, Alvir JMJ. Behavioral response to methylphenidate and treatment outcome in first episode schizophrenia. Psychopharmacol Bull. 1990;26(2):224–30.

    PubMed  CAS  Google Scholar 

  174. Koreen AR, Lieberman JA, Alvir J, Chakos M. The behavioral effect of m-chlorophenylpiperazine (mCPP) and methylphenidate in first-episode schizophrenia and normal controls. Neuropsychopharmacology. 1997. https://doi.org/10.1016/S0893-133X(96)00160-1.

    Article  PubMed  Google Scholar 

  175. Levy DL, Smith M, Robinson D, et al. Methylphenidate increases thought disorder in recent onset schizophrenics, but not in normal controls. Biol Psychiatry. 1993. https://doi.org/10.1016/0006-3223(93)90192-G.

    Article  PubMed  Google Scholar 

  176. Lieberman JA, Kane JM, Sarantakos S, et al. Prediction of relapse in schizophrenia. Arch Gen Psychiatry. 1987. https://doi.org/10.1001/archpsyc.1987.01800190013002.

    Article  PubMed  Google Scholar 

  177. Lieberman JA, Kane JM, Gadaleta D, Brenner R, Lesser MS, Kinon B. Methylphenidate challenge as a predictor of relapse in schizophrenia. Am J Psychiatry. 1984. https://doi.org/10.1176/ajp.141.5.633.

    Article  PubMed  Google Scholar 

  178. Carpenter MD, Winsberg BG, Camus LA. Methylphenidate augmentation therapy in schizophrenia. J Clin Psychopharmacol. 1992. https://doi.org/10.1097/00004714-199208000-00010.

    Article  PubMed  Google Scholar 

  179. Nutt D, King LA, Saulsbury W, Blakemore C. Development of a rational scale to assess the harm of drugs of potential misuse. Lancet. 2007;369(9566):1047–53. https://doi.org/10.1016/S0140-6736(07)60464-4.

    Article  PubMed  Google Scholar 

  180. Diller LH. The run on ritalin: attention deficit disorder and stimulant treatment in the 1990s. Hastings Cent Rep. 1996;26(2):12. https://doi.org/10.2307/3528571.

    Article  PubMed  CAS  Google Scholar 

  181. Klein-Schwartz W. Abuse and toxicity of methylphenidate. Curr Opin Pediatr. 2002;14(2):219–23. https://doi.org/10.1097/00008480-200204000-00013.

    Article  PubMed  Google Scholar 

  182. Repantis D, Schlattmann P, Laisney O, Heuser I. Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res. 2010;62(3):187–206. https://doi.org/10.1016/j.phrs.2010.04.002.

    Article  PubMed  CAS  Google Scholar 

  183. White SR, Yadao CM. Characterization of methylphenidate exposures reported to a regional poison control center. Arch Pediatr Adolesc Med. 2000;154(12):1199–203.

    Article  CAS  Google Scholar 

  184. Kimko HC, Cross JT, Abernethy DR. Pharmacokinetics and clinical effectiveness of methylphenidate. Clin Pharmacokinet. 1999;37(6):457–70. https://doi.org/10.2165/00003088-199937060-00002.

    Article  PubMed  CAS  Google Scholar 

  185. Pliszka S. Practice parameter for the assessment and treatment of children and adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2007;46(7):894–921. https://doi.org/10.1097/chi.0b013e318054e724.

    Article  PubMed  Google Scholar 

  186. Lakhan SE, Kirchgessner A. Prescription stimulants in individuals with and without attention deficit hyperactivity disorder: misuse, cognitive impact, and adverse effects. Brain Behav. 2012;2(5):661–7. https://doi.org/10.1002/brb3.78.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Kelly KL, Rapport MD, DuPaul GJ. Attention deficit disorder and methylphenidate: a multi-step analysis of dose-response effects on children’s cardiovascular functioning. Int Clin Psychopharmacol. 1988;3:167–81.

    Article  CAS  Google Scholar 

  188. Liang EF, Lim SZ, Tam WW, et al. The effect of methylphenidate and atomoxetine on heart rate and systolic blood pressure in young people and adults with attention-deficit hyperactivity disorder (ADHD): systematic review, meta-analysis, and meta-regression. Int J Environ Res Public Health. 2018. https://doi.org/10.3390/ijerph15081789.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wilens TE, Biederman J, Lerner M. Effects of once-daily osmotic-release methylphenidate on blood pressure and heart rate in children with attention-deficit/hyperactivity disorder: results from a one-year follow-up study. J Clin Psychopharmacol. 2004. https://doi.org/10.1097/01.jcp.0000106223.36344.df.

    Article  PubMed  Google Scholar 

  190. Cooper WO, Habel LA, Sox CM, et al. ADHD medications and serious cardiovascular events in children and youth. N Engl J Med. 2011. https://doi.org/10.3109/10641955.2015.1046604.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Shin JY, Roughead EE, Park BJ, Pratt NL. Cardiovascular safety of methylphenidate among children and young people with attention-deficit/hyperactivity disorder (ADHD): nationwide self controlled case series study. BMJ. 2016. https://doi.org/10.1136/bmj.i2550.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Biederman J, Mick E, Surman C, et al. A randomized, placebo-controlled trial of OROS methylphenidate in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2006. https://doi.org/10.1016/j.biopsych.2005.09.011.

    Article  PubMed  Google Scholar 

  193. Rösler M, Fischer R, Ammer R, Ose C, Retz W. A randomised, placebo-controlled, 24-week, study of low-dose extended-release methylphenidate in adults with attention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci. 2009. https://doi.org/10.1007/s00406-008-0845-4.

    Article  PubMed  Google Scholar 

  194. Adler LA, Zimmerman B, Starr HL, et al. Efficacy and safety of OROS methylphenidate in adults with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, double-blind, parallel group, dose-escalation study. J Clin Psychopharmacol. 2009. https://doi.org/10.1097/JCP.0b013e3181a390ce.

    Article  PubMed  Google Scholar 

  195. Adler LA, Orman C, Starr HL, et al. Long-term safety of OROS methylphenidate in adults with attention-deficit/hyperactivity disorder: an open-label, dose-titration, 1-year study. J Clin Psychopharmacol. 2011. https://doi.org/10.1097/JCP.0b013e318203ea0a.

    Article  PubMed  Google Scholar 

  196. Hill SL, El-Khayat RH, Sandilands EA, Thomas SHL. Electrocardiographic effects of methylphenidate overdose. Clin Toxicol. 2010. https://doi.org/10.3109/15563651003720234.

    Article  Google Scholar 

  197. Klampfl K, Quattländer A, Burger R, Pfuhlmann B, Warnke A, Gerlach M. Case report: intoxication with high dose of long-acting methylphenidate (Concerta®) in a suicidal 14-year-old girl. Atten Deficit Hyperact Disord. 2010. https://doi.org/10.1007/s12402-010-0032-0.

    Article  Google Scholar 

  198. Ozdemir E, Karaman MG, Yurteri N, Erdogan A. A case of suicide attempt with long-acting methylphenidate (Concerta). Atten Deficit Hyperact Disord. 2010. https://doi.org/10.1007/s12402-010-0026-y.

    Article  Google Scholar 

  199. Hammerness P, Wilens T, Mick E, et al. Cardiovascular effects of longer-term, high-dose OROS methylphenidate in adolescents with attention deficit hyperactivity disorder. J Pediatr. 2009. https://doi.org/10.1016/j.jpeds.2009.02.008.

    Article  PubMed  Google Scholar 

  200. Habel LA, Cooper WO, Sox CM, et al. ADHD medications and risk of serious cardiovascular events in young and middle-aged adults. JAMA. 2011. https://doi.org/10.1001/jama.2011.1830.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Kraemer M, Uekermann J, Wiltfang J, Kis B. Methylphenidate-induced psychosis in adult attention-deficit/hyperactivity disorder: report of 3 new cases and review of the literature. Clin Neuropharmacol. 2010. https://doi.org/10.1097/WNF.0b013e3181e29174.

    Article  PubMed  Google Scholar 

  202. Barrett SP, Darredeau C, Bordy LE, Pihl RO. Characteristics of methylphenidate misuse in a university student sample. Can J Psychiatry. 2005. https://doi.org/10.1177/070674370505000805.

    Article  PubMed  Google Scholar 

  203. Ross R. Psychotic and manic-like symptoms during stimulant treatment of attention deficit hyperactivity disorder. Am J Psychiatry. 2006. https://doi.org/10.1176/appi.ajp.163.7.1149.

    Article  PubMed  Google Scholar 

  204. Eiland LS, Bell EA, Erramouspe J. Priapism associated with the use of stimulant medications and atomoxetine for attention-deficit/hyperactivity disorder in children. Ann Pharmacother. 2014. https://doi.org/10.1177/1060028014541791.

    Article  PubMed  Google Scholar 

  205. Tong HY, Díaz C, Collantes E, et al. Liver transplant in a patient under methylphenidate therapy: a case report and review of the literature. Case Rep Pediatr. 2015. https://doi.org/10.1155/2015/437298.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Storebø OJ, Pedersen N, Ramstad E, et al. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents: assessment of adverse events in non-randomised studies. Cochrane Database Syst Rev. 2018;5(5):CD012069. https://doi.org/10.1002/14651858.cd012069.pub2.

    Article  PubMed  Google Scholar 

  207. Volkow ND, Wang GJ, Fowler JS, et al. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J Pharmacol Exp Ther. 1999;291(1):409–15.

    PubMed  CAS  Google Scholar 

  208. Musser CJ, Ahmann PA, Theye FW, Mundt P, Broste SK, Mueller-Rizner N. Stimulant use and the potential for abuse in Wisconsin as reported by school administrators and longitudinally followed children. J Dev Behav Pediatr. 1998;19(3):187–92. https://doi.org/10.1097/00004703-199806000-00006.

    Article  PubMed  CAS  Google Scholar 

  209. Brady JV, Griffiths RR, Hienz RD, Ator NA, Lukas SE, Lamb RJ. Assessing drugs for abuse liability and dependence potential in laboratory primates. In: Bozarth MA, editor. Methods of assessing the reinforcing properties of abused drugs. New York: Springer; 1987. p. 45–85. https://doi.org/10.1007/978-1-4612-4812-5_3.

    Chapter  Google Scholar 

  210. Schuster CR. Testing and abuse liability of drugs in humans. NIDA Res Monogr. 1989;92:1–6.

    PubMed  CAS  Google Scholar 

  211. Bergman J, Madras BK, Johnson SE, Spealman RD. Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys. J Pharmacol Exp Ther. 1989;251(1):150–5.

    PubMed  CAS  Google Scholar 

  212. Chait LD. Reinforcing and subjective effects of methylphenidate in humans. Behav Pharmacol. 1994;5(3):281–8. https://doi.org/10.1097/00008877-199406000-00005.

    Article  PubMed  CAS  Google Scholar 

  213. Emmett-Oglesby MW, Wurst M, Lal H. Discriminative stimulus properties of a small dose of cocaine. Neuropharmacology. 1983;22(1):97–101. https://doi.org/10.1016/0028-3908(83)90266-6.

    Article  PubMed  CAS  Google Scholar 

  214. Wood DM, Emmett-Oglesby MW. Substitution and cross-tolerance profiles of anorectic drugs in rats trained to detect the discriminative stimulus properties of cocaine. Psychopharmacology (Berl). 1988;95(3):364–8. https://doi.org/10.1007/BF00181948.

    Article  CAS  Google Scholar 

  215. Evans SM, Johanson CE. Amphetamine-like effects of anorectics and related compounds in pigeons. J Pharmacol Exp Ther. 1987;241(3):817–25.

    PubMed  CAS  Google Scholar 

  216. Huang JT, Ho BT. Discriminative stimulus properties of d-amphetamine and related compounds in rats. Pharmacol Biochem Behav. 1974;2(5):669–73. https://doi.org/10.1016/0091-3057(74)90036-7.

    Article  PubMed  CAS  Google Scholar 

  217. Heishman SJ, Henningfield JE. Discriminative stimulus effects of d-amphetamine, methylphenidate, and diazepam in humans. Psychopharmacology (Berl). 1991;103(4):436–42. https://doi.org/10.1007/BF02244241.

    Article  CAS  Google Scholar 

  218. Rush CR, Kollins SH, Pazzaglia PJ. Discriminative-stimulus and participant-rated effects of methylphenidate, bupropion, and triazolam in d-amphetamine-trained humans. Exp Clin Psychopharmacol. 1998;6(1):32–44. https://doi.org/10.1037/1064-1297.6.1.32.

    Article  PubMed  CAS  Google Scholar 

  219. Sevak RJ, Stoops WW, Hays LR, Rush CR. Discriminative stimulus and subject-rated effects of methamphetamine, d-amphetamine, methylphenidate, and triazolam in methamphetamine-trained humans. J Pharmacol Exp Ther. 2009;328(3):1007–18. https://doi.org/10.1124/jpet.108.147124.

    Article  PubMed  CAS  Google Scholar 

  220. Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009. https://doi.org/10.1038/nrn2648.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Arnsten AFT. Development of the cerebral cortex: XIV. Stress impairs prefrontal cortical function. J Am Acad Child Adolesc Psychiatry. 1999. https://doi.org/10.1097/00004583-199902000-00024.

    Article  PubMed  Google Scholar 

  222. Urban KR, Waterhouse BD, Gao WJ. Distinct age-dependent effects of methylphenidate on developing and adult prefrontal neurons. Biol Psychiatry. 2012;72(10):880–8. https://doi.org/10.1016/j.biopsych.2012.04.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Urban KR, Li YC, Gao WJ. Treatment with a clinically-relevant dose of methylphenidate alters NMDA receptor composition and synaptic plasticity in the juvenile rat prefrontal cortex. Neurobiol Learn Mem. 2013;101:65–74. https://doi.org/10.1016/j.nlm.2013.01.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Urban KR, Gao W-J. Psychostimulants as cognitive enhancers in adolescents: more risk than reward? Front Public Health. 2017;5:260. https://doi.org/10.3389/fpubh.2017.00260.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Inglis SK, Carucci S, Garas P, et al. Prospective observational study protocol to investigate long-term adverse effects of methylphenidate in children and adolescents with ADHD: the Attention Deficit Hyperactivity Disorder Drugs Use Chronic Effects (ADDUCE) study. BMJ Open. 2016;6(4):e010433. https://doi.org/10.1136/bmjopen-2015-010433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kapur.

Ethics declarations

Funding

No funding was received to undertake this research.

Conflict of Interest

Ajay Kapur has no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapur, A. Is Methylphenidate Beneficial and Safe in Pharmacological Cognitive Enhancement?. CNS Drugs 34, 1045–1062 (2020). https://doi.org/10.1007/s40263-020-00758-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00758-w

Navigation