Skip to main content
Log in

Regulation of the Asymmetric Distribution of Lipids in Human Erythrocyte Membrane in the Presence of Glycerol and Polyethylene Glycol

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Cryoprotective agents (CPAs) used to protect erythrocytes during freezing can affect the structural and functional parameters of the membrane, which have an impact on cell viability. The purpose of the study was to examine the effect of glycerol and PEG on the externalization of phosphatidylserine (PS) on the surface of erythrocytes, as well as to determine the role of Ca2+ ions and ATP-dependent processes in the regulation of transmembrane lipid asymmetry in the presence of these CPAs. It was found that the glycerol effect on erythrocytes does not lead to PS externalization. Maintaining the activity of scramblases and flipases in erythrocytes in the presence of glycerol at the level of control parameters allows them to respond similar to native cells to an increase in [Ca2+]in caused by the ionophore A23187 and blocking of ATPase reactions caused by vanadate. The PEG effect contributes to the disruption of the PS distribution in the membrane due to changes in the activity of lipid translocases. However, activation of scramblases and/or inhibition of flipases under the PEG effect does not reach maximum values, as evidenced by an increase in the amount of erythrocytes with externalized PS under cell loading with Ca2+ by ionophore and inhibition of ATP-dependent reactions by vanadate. The effect of PEG on the lipid asymmetry of erythrocyte membranes is apparently mediated by its impact on the Ca2+ level in the cells. Disturbance of the structural parameters of the membrane due to the PS redistribution in the PEG presence, that distinguish it from the glycerol effect, can cause instability of cryopreserved erythrocytes under physiological conditions in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. An, X.L., Takakuwa, Y., Manno, S., Han, B.G., Gascard, P., and Mohandas, N., Structural and functional characterization of protein 4.1R-phosphatidylserine interaction: potential role in 4.1R sorting within cells, J. Biol. Chem., 2001, vol. 276, p. 35778.

    Article  CAS  Google Scholar 

  2. An, X., Guo, X., Wu, Y., and Mohandas, N., Phosphatidylserine binding sites in red cell spectrin, Blood Cells Mol. Dis., 2004, vol. 32, p. 430.

    Article  CAS  Google Scholar 

  3. Andersen, J.P., Vestergaard, A.L., Mikkelsen, S.A., Mogensen, L.S., Chalat, M., and Molday, R.S., P4-ATPases as phospholipid flippases-structure, function, and enigmas, Front. Physiol., 2016, vol. 7, p. 275. https://doi.org/10.3389/fphys.2016.00275

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arashiki, N. and Takakuwa, Y., Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: implications for erythrocyte functions, Curr. Opin. Hematol., 2017, vol. 24, p. 167.

    Article  CAS  Google Scholar 

  5. Baunbaek, M., and Bennekou, P., Evidence for a random entry of Ca2+ into human red cells, Bioelectrochemistry, 2008, vol. 73, p. 145.

    Article  CAS  Google Scholar 

  6. Contreras, F.X., Sánchez-Magraner, L., Alonso, A., and Goñi, F.M., Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes, FEBS Lett., 2010, vol. 584, p. 1779.

    Article  CAS  Google Scholar 

  7. Devaux, P.F., Herrmann, A., Ohlwein, N., and Kozlov, M.M., How lipid flippases can modulate membrane structure, Biochim. Biophys. Acta,Biomembr., 2008, vol. 1778, p. 1591.

    Article  CAS  Google Scholar 

  8. Foller, M., Kasinathan, R.S., Koka, S., Lang, C., Shumilina, E., Birnbaumer, L., Lang, F., and Huber, S.M., TRPC6 contributes to the Ca2+ leak of human erythrocytes, Cell Physiol. Biochem., 2008, vol. 21, p. 183.

    Article  CAS  Google Scholar 

  9. Hankins, H.M., Baldridge, R.D., Xu, P., and Graham, T.R., Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution, Traffic, 2015, vol. 16, p. 35.

    Article  CAS  Google Scholar 

  10. Hinderliter, A., Biltonen, R.L., and Almeida, P.F., Lipid modulation of protein-induced membrane domains as a mechanism for controlling signal transduction, Biochemistry, 2004, vol. 43, p. 7102.

    Article  CAS  Google Scholar 

  11. Korenaga, R., Ando, J., Ohtsuka, A., Sakuma, I., Yang, W., Toyo-oka, T., and Kamiya, A., Close correlation between cytoplasmic Ca2+ levels and release of an endothelium-derived relaxing factor from cultured endothelial cells, Cell Struct. Funct., 1993, vol. 18, p. 95.

    Article  CAS  Google Scholar 

  12. Kucherenko, Y.V., and Bernhardt, I., The study of Ca2+ influx in human erythrocytes in isotonic polyethylene (glycol) 1500 (PEG-1500) and sucrose media, Ukr. Biokhim. Zh., 2006, vol. 78, no. 6, p. 46.

    CAS  Google Scholar 

  13. Lang, E., and Lang, F., Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death, Biomed. Res. Int., 2015, ID 513518. https://doi.org/10.1155/2015/513518

  14. Liou, A.Y., Molday, L.L., Wang, J., Andersen, J.P., and Molday, R.S., Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells, J. Biol. Chem., 2019, vol. 294, p. 6809.

    Article  CAS  Google Scholar 

  15. Manno, S., Takakuwa, Y., and Mohandas, N., Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, p. 1943.

    Article  CAS  Google Scholar 

  16. Marsault, R., Murgia, M., Pozzan, T., and Rizzuto, R., Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells, EMBO J., 1997, vol. 16, p. 1575.

    Article  CAS  Google Scholar 

  17. Marsh, D., Lipid–protein interactions and heterogeneous lipid distribution in membranes, Mol. Membr. Biol., 1995, vol. 12, p. 59.

    Article  CAS  Google Scholar 

  18. Nakano, M., Fukuda, M., Kudo, T., Matsuzaki, N., Azuma, T., Sekine, K., Endo, H., and Handa, T., Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering, J. Phys. Chem. B, 2009, vol. 113, p. 6745.

    Article  CAS  Google Scholar 

  19. Op den Kamp, J.A., Lipid asymmetry in membranes, Annu. Rev. Biochem., 1979, vol. 48, pp. 47–71.

    Article  CAS  Google Scholar 

  20. Patton, C., Thompson, S., and Epel, D., Some precautions in using chelators to buffer metals in biological solutions, Cell Calcium, 2004, vol. 35, p. 427.

    Article  CAS  Google Scholar 

  21. Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T., Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria, Science, 1993, vol. 262, p. 744.

    Article  CAS  Google Scholar 

  22. Scott, K.L., Lecak, J., and Acker, J.P., Biopreservation of red blood cells: past, present, and future, Transfus. Med. Rev., 2005, vol. 19, p. 127.

    Article  Google Scholar 

  23. Segawa, K., Kurata, S., and Nagata, S., Human type IV P‑type ATPases that work as plasma membrane phospholipid flippases and their regulation by caspase and calcium, J. Biol. Chem., 2016, vol. 291, p. 762.

    Article  CAS  Google Scholar 

  24. Singbartl, K., Langer, R., and Henrich, A., Altered membrane skeleton of hydroxyethylstarch-cryopreserved human erythrocytes, Cryobiology, 1998, vol. 36, p. 115.

    Article  CAS  Google Scholar 

  25. Weiss, E., Cytlak, U.M., Rees, D.C., Osei, A., and Gibson, J.S., Deoxygenation-induced and Ca2+ dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients, Cell Calcium, 2012, vol. 51, p. 51.

    Article  CAS  Google Scholar 

  26. Zemlianskykh, N.G. and Babiychuk, L.A., The changes in erythrocyte Ca2+-ATPase activity induced by PEG-1500 and low temperatures, Cell Tissue Biol., 2016, vol. 11, p. 104.

    Article  Google Scholar 

  27. Zemlianskykh, N.G. and Babijchuk, L.A., Spatial-conformational modifications of proteins in membrane–cytoskeleton complex of cryopreserved erythrocytes, Biol. Membr., 2019, vol. 36, no. 2, p. 125.

    CAS  Google Scholar 

  28. Zemlyanskikh, N.G. and Kofanova, O.A., Modulation of human erythrocyte Ca2+-ATPase activity by glycerol: the role of calmodulin, Biochemistry (Moscow), 2006, vol. 71, p. 900.

    PubMed  CAS  Google Scholar 

Download references

Funding

The publication was prepared as part of the project of the Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine “Studying the Mechanisms for Modifying the Structural Parameters and the Metabolic State of the Cord Blood Nucleated Cells and Donor Erythrocytes under the Effect of Different Cryoprotective Solutions and Low Temperatures,” state registration no. 0109U00278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Zemlianskykh.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving humans or animals as direct objects performed by the author.

Additional information

Abbreviations: CPA—cryoprotective agent, PEGpolyethylene glycol, PSphosphatidylserine, [Ca2+]in—intracellular concentration of Ca2+ ions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemlianskykh, N.G. Regulation of the Asymmetric Distribution of Lipids in Human Erythrocyte Membrane in the Presence of Glycerol and Polyethylene Glycol. Cell Tiss. Biol. 14, 286–293 (2020). https://doi.org/10.1134/S1990519X20040124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20040124

Keywords:

Navigation