Skip to main content
Log in

Performance and sustainability overview of alkali-activated self-compacting concrete

  • Review
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Self-compacting concrete (SCC) has gained huge attention recently due to its high workability which eliminates the need for vibration and makes its placement easier compared to conventional concrete. However, the production of Portland cement (PC) which is the main binder in SCC is energy-intensive and one of the major contributors to the world’s carbon dioxide emission. On the other hand, the use of alkali-activated binders (AABs) in concrete has been reported to reduce the energy consumption and carbon emission of concrete by more than 50%. Therefore, the use of AAB as a binder in SCC can help to achieve an eco-friendlier concrete. This paper gives a short overview of the performance of SCC made with AABs. The effect of various factors on the performance of alkali-activated self-compacting concrete (AASCC) was discussed and a simplified sustainability assessment of AASCC was carried out. Discussions from this paper showed that AASCC with acceptable fresh and hardened properties can be achieved with the proper selection of materials. In addition, the evaluation of the embodied energy and carbon of different types of concrete showed that AASCC is more sustainable. However, more research in this field is required to encourage its universal acceptance and large-scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from [26])

Fig. 2

(adapted from [26])

Fig. 3

(adapted from [40])

Fig. 4

(adapted from [40])

Fig. 5

(adapted from [26])

Fig. 6

(adapted from [26])

Fig. 7
Fig. 8

(adapted from [26])

Fig. 9

(adapted from [26])

Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AAB:

Alkali activated binders

AAC:

Alkali activated concrete

AASCC:

Alkali activated self-compacting concrete

CP:

Ceramic powder

FA:

Fly ash

HRWRA:

High-range water-reducing admixture

MK:

Metakaolin

NH:

Sodium hydroxide

NS:

Sodium silicate

PC:

Portland cement

PCC:

Portland cement concrete

RHA:

Rice husk ash

SL:

Slag

QP:

Quartz powder

References

  1. Sivakrishna A, Adesina A, Awoyera PO, et al. Green concrete: a review of recent developments. Mater Today Proc. 2020;27:54–8. https://doi.org/10.1016/j.matpr.2019.08.202.

    Article  CAS  Google Scholar 

  2. Adesina A. Concrete sustainability issues. In: 38th Cement and Concrete Science Conference, UK, London, 2018.

  3. Awoyera PO, Adesina A, Sivakrishna A, et al. Alkali activated binders: challenges and opportunities. Mater Today Proc. 2020;27:40–3. https://doi.org/10.1016/j.matpr.2019.08.199.

    Article  CAS  Google Scholar 

  4. Adesina A. Performance of fibre reinforced alkali-activated composites—a review. Materialia. 2020;12:100782. https://doi.org/10.1016/j.mtla.2020.100782.

    Article  CAS  Google Scholar 

  5. Bilek V. Freezing and thawing resistance of alkali-activated concretes for the production of building elements. In: International conference on alkali activated materials and geopolymers: versatile materials offering high performance and low emissions. Ostrava, Czech Republic. May 27–June 1, 2018.

  6. Juenger MCG, Winnefeld F, Provis JL, et al. Advances in alternative cementitious binders. Cem Concr Res. 2011;41:1232–43. https://doi.org/10.1016/j.cemconres.2010.11.012.

    Article  CAS  Google Scholar 

  7. Hua X, Provis JL, Van Deventer JSJ, et al. Characterization of aged slag concretes. ACI Mater J. 2008;105:131–9. https://doi.org/10.14359/19753.

    Article  Google Scholar 

  8. Awoyera P, Adesina A. Durability properties of alkali activated slag composites: short overview. Silicon. 2020;12:987–96. https://doi.org/10.1007/s12633-019-00199-1.

    Article  CAS  Google Scholar 

  9. Adesina A, Awoyera P. Overview of trends in the application of waste materials in self-compacting concrete production. SN Appl Sci. 2019;1:962. https://doi.org/10.1007/s42452-019-1012-4.

    Article  CAS  Google Scholar 

  10. Hammond GP, Jones CI. Embodied energy and carbon in construction materials. Proc Inst Civ Eng Energy. 2008;161:87–98. https://doi.org/10.1680/ener.2008.161.2.87.

    Article  Google Scholar 

  11. Purnell P. The carbon footprint of reinforced concrete. Adv Cem Res. 2013;25:362–8. https://doi.org/10.1680/adcr.13.00013.

    Article  CAS  Google Scholar 

  12. Patel YJ, Shah N. Enhancement of the properties of ground granulated blast furnace slag based self compacting geopolymer concrete by incorporating rice husk ash. Constr Build Mater. 2018;171:654–62. https://doi.org/10.1016/j.conbuildmat.2018.03.166.

    Article  CAS  Google Scholar 

  13. García-Lodeiro I, Fernández-Jiménez A, Palomo A, et al. Effect of calcium additions on N-A-S-H cementitious gels. J Am Ceram Soc. 2010;93(7):1934–40. https://doi.org/10.1111/j.1551-2916.2010.03668.x.

    Article  CAS  Google Scholar 

  14. Xiao R, Ma Y, Jiang X, et al. Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J Clean Prod. 2020;252:119610. https://doi.org/10.1016/j.jclepro.2019.119610.

    Article  CAS  Google Scholar 

  15. Ikponmwosa EE, Ehikhuenmen S, Emeshie J, et al. Performance of coconut shell alkali-activated concrete: experimental investigation and statistical modelling. 2020; https://doi.org/10.1007/s12633-020-00435-z

  16. Adesina A. Effect of green activators on the properties of alkali activated materials: review. In: SynerCrete’18 International Conference on Interdisciplinary Approaches for Cement-based Materials and Structural Concrete, Funchal, Portugal, 24–26 October 2018.

  17. Adesina A. Alkali activated materials: review of current problems and possible solutions. In: SynerCrete’18 International Conference on Interdisciplinary Approaches for Cement-based Materials and Structural Concrete, Funchal, Portugal, 24–26 October 2018.

  18. Fernández-Jiménez AM. Cementos de Escorias Activadas Alcalinamente: Influencia de Las Variables y Modelizacion Del Proceso, Tesis, Universidad Autónoma de Madrid. doctoral, 2000.

  19. Van Jaarsveld JGS, Van Deventer JSJ. Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Ind Eng Chem Res. 1999;38:3932–41. https://doi.org/10.1021/ie980804b.

    Article  CAS  Google Scholar 

  20. Palomo A, Grutzeck MW, Blanco MT. Alkali-activated fly ashes: a cement for the future. Cem Concr Res. 1999;29(8):1323–9. https://doi.org/10.1016/S0008-8846(98)00243-9.

    Article  CAS  Google Scholar 

  21. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem Concr Res. 2011;41(9):923–31. https://doi.org/10.1016/j.cemconres.2011.05.006.

    Article  CAS  Google Scholar 

  22. Sasanipour H, Aslani F. Durability properties evaluation of self-compacting concrete prepared with waste fine and coarse recycled concrete aggregates. Constr Build Mater. 2020;236:117540. https://doi.org/10.1016/j.conbuildmat.2019.117540.

    Article  CAS  Google Scholar 

  23. Saini G, Vattipalli U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud Constr Mater. 2020;12:e00352. https://doi.org/10.1016/j.cscm.2020.e00352.

    Article  Google Scholar 

  24. Manjunath R, Narasimhan MC. An experimental investigation on self-compacting alkali activated slag concrete mixes. J Build Eng. 2018;17(5):1–12. https://doi.org/10.1016/j.jobe.2018.01.009.

    Article  Google Scholar 

  25. Manjunath R, Narasimhan MC, Umesh KM, et al. Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Constr Build Mater. 2019;198(2):133–47. https://doi.org/10.1016/j.conbuildmat.2018.11.242.

    Article  CAS  Google Scholar 

  26. Nagaraj VK, Babu DLV. Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature. J. Build. Eng. 2018;20(11):137–55. https://doi.org/10.1016/j.jobe.2018.07.005.

    Article  Google Scholar 

  27. Gülşan ME, Alzeebaree R, Rasheed AA, et al. Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Constr Build Mater. 2019;211(6):271–83. https://doi.org/10.1016/j.conbuildmat.2019.03.228.

    Article  CAS  Google Scholar 

  28. Fareed Ahmed M, Fadhil Nuruddin M, Shafiq N. Compressive strength and workability characteristics of low-calcium fly ash-based self-compacting geopolymer concrete. World Acad Sci Eng Technol. 2011;5(2):64–70.

    Google Scholar 

  29. Valizadeh A, Aslani F, Asif Z, et al. Development of heavyweight self-compacting concrete and ambient-cured heavyweight geopolymer concrete using magnetite aggregates. Materials (Basel). 2019;12(7):1035. https://doi.org/10.3390/ma12071035.

    Article  CAS  Google Scholar 

  30. Abdollahnejad Z, Mastali M, Mastali M, et al. Comparative study on the effects of recycled glass-fiber on drying shrinkage rate and mechanical properties of the self-compacting mortar and fly ash-slag geopolymer mortar. J Mater Civ Eng. 2017;29(8):1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001918.

    Article  Google Scholar 

  31. Patel YJ, Shah N. Development of self-compacting geopolymer concrete as a sustainable construction material. Sustain Environ Res. 2018;28(6):412–21. https://doi.org/10.1016/j.serj.2018.08.004.

    Article  CAS  Google Scholar 

  32. Santana HA, Andrade Neto JS, Amorim Júnior NS, et al. Self-compacting geopolymer mixture: dosing based on statistical mixture design and simultaneous optimization. Constr Build Mater. 2020;249(7):118677. https://doi.org/10.1016/j.conbuildmat.2020.118677.

    Article  CAS  Google Scholar 

  33. Huseien GF, Sam ARM, Shah KW, et al. Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete. Constr Build Mater. 2020;236(3):117574. https://doi.org/10.1016/j.conbuildmat.2019.117574.

    Article  CAS  Google Scholar 

  34. Ushaa TG, Anuradha R, Venkatasubramani GS. Performance of self-compacting geopolymer concrete containing different mineral admixtures. Sci Indian J Eng Mater. 2015;22(4):473–81.

    CAS  Google Scholar 

  35. Demie S, Nuruddin MF, Shafiq N. Effects of micro-structure characteristics of interfacial transition zone on the compressive strength of self-compacting geopolymer concrete. Constr Build Mater. 2013;22(4):473–81. https://doi.org/10.1016/j.conbuildmat.2012.11.067.

    Article  Google Scholar 

  36. Shafiq I, Azreen M, Hussin MW. Sulphuric acid resistant of self compacted geopolymer concrete containing slag and ceramic waste. In: MATEC Web Conf. 2017; Ho Chi Minh City, Vietnam, August 5–6, 2016 97(1):01102. https://doi.org/10.1051/matecconf/20179701102.

  37. Henigal AM, Sherif MA, Hassan HH. Study on properties of self-compacting geopolymer concrete. IOSR J Mech Civ Eng. 2017;14(2):52–66. https://doi.org/10.9790/1684-1402075266.

    Article  Google Scholar 

  38. Kamseu E, Ponzoni C, Tippayasam C, et al. Self-compacting geopolymer concretes: effects of addition of aluminosilicate-rich fines. J Build Eng. 2016;5(3):211–21. https://doi.org/10.1016/j.jobe.2016.01.004.

    Article  Google Scholar 

  39. EFNARC. The European guidelines for self-compacting concrete: specification, the European guidelines for self-compacting concrete: specification, production and use. EFNARC 2005, Surrey, United Kingdom.

  40. Huseien GF, Shah KW. Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation. Constr Build Mater. 2020;235(2):117458. https://doi.org/10.1016/j.conbuildmat.2019.117458.

    Article  CAS  Google Scholar 

  41. Güneyisi E, Atewi YR, Hasan MF. Fresh and rheological properties of glass fiber reinforced self-compacting concrete with nanosilica and fly ash blended. Constr Build Mater. 2019;211(6):349–62. https://doi.org/10.1016/j.conbuildmat.2019.03.087.

    Article  CAS  Google Scholar 

  42. Collepardi M, Ogoumah-Olagot JJ, Skarp U, et al. Influence of amorphous colloidal silica on the properties of self-compacting concretes. In: International Conference. Challenges in Concrete Construction—Innovations and Developments in Concrete Materials Construction, Dundee, Scotland. 9–11 September, pp. 473–483.

  43. Bilek V, Opravil T, Soukal F. Searching for practically applicable alkali-activated concretes. In: RILEM First International Conference on Advances in Chemically Activated Materials. Jinan, China. 9th May 2010.

  44. Awoyera PO, Adesina A, Gobinath R. Role of recycling fine materials as filler for improving performance of concrete—a review. Aust J Civ Eng. 2019;17(2):85–95. https://doi.org/10.1080/14488353.2019.1626692.

    Article  Google Scholar 

  45. Shi C, Krivenko PV, Roy D. Alkali-activated cements and concretes. Oxford: CRC Press; 2006.

    Book  Google Scholar 

  46. Roy DM, Silsbee MR. Alkali activated cementitious materials: an overview. MRS Proc. 1991;245(1):153. https://doi.org/10.1557/proc-245-153.

    Article  Google Scholar 

  47. Wang SD, Scrivener KL. Hydration products of alkali activated slag cement. Cem Concr Res. 1995;25(3):561–71. https://doi.org/10.1016/0008-8846(95)00045-E.

    Article  CAS  Google Scholar 

  48. Singh B, Ishwarya G, Gupta M, et al. Geopolymer concrete: a review of some recent developments. Constr Build Mater. 2015;85(6):78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.

    Article  Google Scholar 

  49. Nazari A, Riahi S. The role of SiO2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete. Mater Sci Eng A. 2011;528(4):2149–157. https://doi.org/10.1016/j.msea.2010.11.064.

    Article  CAS  Google Scholar 

  50. Adesina A. Durability enhancement of concrete using nanomaterials: an overview. Mater. Sci. Forum. 2019;967(8):221–7. https://doi.org/10.4028/www.scientific.net/MSF.967.221.

    Article  Google Scholar 

  51. Adesina A. Nanomaterials in cementitious composites: review of durability performance. J Build Pathol Rehabil. 2020;5:21. https://doi.org/10.1007/s41024-020-00089-9.

    Article  Google Scholar 

  52. Chi M, Huang R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater. 2013;40(3):291–98. https://doi.org/10.1016/j.conbuildmat.2012.11.003.

    Article  Google Scholar 

  53. Jin F, Al-Tabbaa A. Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Constr Build Mater. 2015;81:58–65. https://doi.org/10.1016/j.conbuildmat.2015.01.082.

    Article  Google Scholar 

  54. Adesina A, Atoyebi OD. Effect of crumb rubber aggregate on the performance of cementitious composites: a review. IOP Conf Ser Earth Environ Sci. 2020;445(1):012032. https://doi.org/10.1088/1755-1315/445/1/012032.

    Article  Google Scholar 

  55. Awoyera PO, Adesina A. Plastic wastes to construction products: status, limitations and future perspective. Case Stud Constr. Mater. 2020;12:e00330. https://doi.org/10.1016/j.cscm.2020.e00330.

    Article  Google Scholar 

  56. Adesina A. Properties of alkali activated slag concrete incorporating waste materials as aggregate: a review. Mater Sci Forum. 2019;967(4):214–20. https://doi.org/10.4028/www.scientific.net/msf.967.214.

    Article  Google Scholar 

  57. Marceau ML, Nisbet MA, Vangeem MG. Life cycle inventory of Portland cement concrete, SN3011. Life Cycle Inventory of Portland Cement Manufacture, SN2095b, Portland Cement Association, Skokie, Illinois, USA, 2006, pp. 1–69.

  58. EcoProfile—Eurochlor. https://www.eurochlor.org/topics/sustainability/ecoprofile/. Accessed 5 Apr 2020.

  59. Fawer M, Concannon M, Rieber W. Life cycle inventories for the production of sodium silicates. Int J Life Cycle Assess. 1999;4(4):207–12. https://doi.org/10.1007/BF02979498.

    Article  CAS  Google Scholar 

  60. EFCA—European Federation of Concrete Admixtures Assoc’s. http://www.efca.info/. Accessed 14 Apr 2020.

  61. Jones R, Mccarthy M, Newlands M. Fly ash route to low embodied CO2 and implications for concrete construction. In: World Coal Ash Conference. Denver, United States. 9–12 May 2011.

  62. Ranade R. Advanced cementitious composite development for resilient and sustainable infrastructure. University of Michigan, ProQuest Dissertations Publishing, 2014. 3619670. http://search.proquest.com/openview/92171926866f1aa87249a83a52f85afd/1?pq-origsite=gscholar&cbl=18750&diss=y&casa_token=oj3L4n3eyCkAAAAA:eZqor4-3hg97VVm3LOFu6Zm0i24uFTstNn2rhIx6VF7p68YZxT6Jrd9zsfbWYCq9MGVzogX6crY. Accessed 5 Apr 2020.

  63. Nisbet MA, Marceau ML, Vangeem MG. Environmental life cycle inventory of Portland cement concrete, 2137a, Portland Cement Association, Skokie, Illinois, USA, 2002.

  64. Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43(6):125–30. https://doi.org/10.1016/j.conbuildmat.2013.01.023.

    Article  Google Scholar 

  65. Law DW, Adam AA, Molyneaux TK, et al. Durability assessment of alkali activated slag (AAS) concrete. Mater Struct Constr. 2012;45(2):1425–37. https://doi.org/10.1617/s11527-012-9842-1.

    Article  CAS  Google Scholar 

  66. Khatib JM. Performance of self-compacting concrete containing fly ash. Constr Build Mater. 2008;22(9):1963–71. https://doi.org/10.1016/j.conbuildmat.2007.07.011.

    Article  Google Scholar 

  67. Guerrieri M, Sanjayan J, Collins F. Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures. Fire Mater. 2009;33(1):51–62. https://doi.org/10.1002/fam.983.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeyemi Adesina.

Ethics declarations

Conflict of interests

The author declares that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesina, A. Performance and sustainability overview of alkali-activated self-compacting concrete. Waste Dispos. Sustain. Energy 2, 165–175 (2020). https://doi.org/10.1007/s42768-020-00045-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-020-00045-w

Keywords

Navigation