Skip to main content
Log in

EXTREMAL RAYS IN THE HERMITIAN EIGENVALUE PROBLEM FOR ARBITRARY TYPES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The Hermitian eigenvalue problem asks for the possible eigenvalues of a sum of Hermitian matrices given the eigenvalues of the summands. This is a problem about the Lie algebra of the maximal compact subgroup of G = SL(n). There is a polyhedral cone (the \eigencone") determining the possible answers to the problem. These eigencones can be defined for arbitrary semisimple groups G, and also control the (suitably stabilized) problem of existence of non-zero invariants in tensor products of irreducible representations of G.

We give a description of the extremal rays of the eigencones for arbitrary semisimple groups G by first observing that extremal rays lie on regular facets, and then classifying extremal rays on an arbitrary regular face. Explicit formulas are given for some extremal rays, which have an explicit geometric meaning as cycle classes of interesting loci, on an arbitrary regular face. The remaining extremal rays on that face are understood by a geometric process we introduce, and explicate numerically, called induction from Levi subgroups. Several numerical examples are given. The main results, and methods, of this paper generalize [B3] which handled the case of G = SL(n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Belkale, Local systems on ℙ1S for S a finite set, Compositio Math. 129 (2001), no. 1, 67–86.

    Article  MathSciNet  Google Scholar 

  2. P. Belkale, Invariant theory of GL(n) and intersection theory of Grassmannians, Int. Math. Res. Not. 69 (2004), 3709–3721.

    Article  MathSciNet  Google Scholar 

  3. P. Belkale, Extremal rays in the Hermitian eigenvalue problem, Math. Ann. 2018, https://doi.org/10.1007/s00208-018-1751-3.

  4. P. Belkale, S. Kumar, Eigenvalue problem and a new product in cohomology of ag varieties, Invent. Math. 166 (2006), no. 1, 185–228.

    Article  MathSciNet  Google Scholar 

  5. P. Belkale, S. Kumar, The multiplicative eigenvalue problem and deformed quantum cohomology, Adv. Math. 288 (2016), 1309–1359.

    Article  MathSciNet  Google Scholar 

  6. P. Belkale, S. Kumar, N. Ressayre, A generalization of Fulton's conjecture for arbitrary groups, Math. Ann. 354 (2012), no. 2, 401–425.

    Article  MathSciNet  Google Scholar 

  7. A. Berenstein, R. Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert–Mumford criterion, J. Amer. Math. Soc. 13 (2000), no. 2, 433–466.

    Article  MathSciNet  Google Scholar 

  8. И. H. Бeрнштйн, И. M. Гeльфaнд, C. И. Гeльфaнд, Клemкu Шбyepma u кoϨomoлoϨuu просmранств G/P, УMH 28 (1973), вьш. 3(171), 3–26. Engl. transl.: I. Bernšteĭn, I. M. Gel’fand, S. I. Gel’fand, Schubert cells, and the cohomology of the spaces G/P, Russian Math. Surveys 28 (1973), no. 3, 1–26.

  9. A. Borel, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

  10. N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.

  11. M. Brion, Restriction de représentations et projections d'orbites coadjointes (d'aprés Belkale, Kumar et Ressayre), in: Séminaire Bourbaki, Vol. 2011/2012, Exposés 1043–1058, Astérisque 352 (2013), Exp. No. 1043, vii, 1–33.

  12. M. Brion, P. Polo, Generic singularities of certain Schubert varieties, Math. Z. 231 (1999), no. 2, 301–324.

    Article  MathSciNet  Google Scholar 

  13. H. Derksen, J. Weyman, The combinatorics of quiver representations, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 1061–1131.

    Article  MathSciNet  Google Scholar 

  14. W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenz- gebiete, Vol. 2, Springer-Verlag, Berlin, 1998.

  15. W. Fulton, J. Harris, Representation Theory, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.

    Google Scholar 

  16. M. Kapovich, S. Kumar, J. Millson, The eigencone and saturation for Spin(8), Pure Appl. Math. Q. 5(2009), no. 2, Special Issue: In honor of Friedrich Hirze-bruch, Part 1, 755–780.

  17. M. Kapovich, B. Leeb, J. Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Diff. Geom. 81 (2009), no. 2, 297–354.

    Article  MathSciNet  Google Scholar 

  18. J. Kiers, On the saturation conjecture for Spin(2n), Exp. Math., 2019, https://doi.org/10.1080/10586458.2018.1537866.

  19. A. A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419–445.

  20. A. Knutson, T. Tao, C. Woodward, The honeycomb model of GLn(ℂ) tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone, J. Amer. Math. Soc. 17 (2004), no. 1, 19–48.

    Article  MathSciNet  Google Scholar 

  21. S. Kumar, A survey of the additive eigenvalue problem, Transform. Groups, 19 (2014), no. 4, 1051–1148. With an appendix by M. Kapovich.

  22. L. Ness, A stratification of the null cone via the moment map, Amer. J. Math. 106 (1984), 1281–1329. With an appendix by D. Mumford.

  23. A. Ramanathan, Moduli for principal bundles over algebraic curves. I, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), no. 3, 301–328.

    Article  MathSciNet  Google Scholar 

  24. N. Ressayre, Geometric invariant theory and the generalized eigenvalue problem, Invent. Math. 180 (2010), no. 2, 389–441.

    Article  MathSciNet  Google Scholar 

  25. N. Ressayre, Geometric invariant theory and generalized eigenvalue problem II, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 4, 1467–1491.

    Article  MathSciNet  Google Scholar 

  26. M. Roth, Reduction rules for Littlewood–Richardson coefficients, Int. Math. Res. Not. 18 (2011), 4105–4134.

    MathSciNet  MATH  Google Scholar 

  27. The Sage Developers, Sage Mathematics Software (Version 8:0), http://www.sagemath.org (2018).

  28. R. Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), 46–91.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. BELKALE.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BELKALE, P., KIERS, J. EXTREMAL RAYS IN THE HERMITIAN EIGENVALUE PROBLEM FOR ARBITRARY TYPES. Transformation Groups 25, 667–706 (2020). https://doi.org/10.1007/s00031-019-09547-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-019-09547-2

Navigation