Skip to main content
Log in

Improvement in Mechanical Properties and Wear Resistance of 13Cr–4Ni Martensitic Steel by Cyclic Heat Treatment

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

13Cr–4Ni martensitic stainless steel was subjected to a cyclic heat treatment (CHT) by using Gleeble 3800, thermo-mechanical simulator. A single cycle of this heat treatment consisted of austenitization at 1000 °C, holding for 5 min and fast cooling to room temperature. The effects on microstructure and mechanical properties were studied after conducting two (1000-2c) and four such cycles (1000-4c). The wear behavior of the cyclic heat-treated and the as-received material was then investigated by conducting dry sliding wear tests on a pin-on-disk wear testing machine. The evolved microstructure after CHT consisted of a reduced fraction of undesiring δ-ferrite and retained austenite phases and thereby an increased fraction of martensitic. Along with this, refinement in the martensite blocks attributed the increased hardness (by 46%) and ultimate tensile strength (by 41%) with a slight loss of ductility. The wear resistance of cyclic heat-treated specimens was found to be 41%, 18%, and 19% higher at 10 N, 20 N, and 30 N loads, respectively, than the counterpart of the as-received specimen. The plowing and craters were found responsible for the material removal from the surface of both as-received and cyclic heat-treated specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Prakash G, and Nath S K, J Mater Eng Perform 27 (2018) 3206. https://doi.org/10.1007/s11665-018-3424-5.

    Article  CAS  Google Scholar 

  2. Vadiraj A, Kamaraj M, and Sreenivasan VS, Surf Eng 28 (2012) 192. https://doi.org/10.1179/1743294411y.0000000003.

    Article  CAS  Google Scholar 

  3. Goyal V, Sharma S K, and Kumar B V M, Mater Today Proc 2 (2015) 1082. https://doi.org/10.1016/j.matpr.2015.07.013.

    Article  Google Scholar 

  4. Amarendra H J, Kalhan P, Chaudhari G P, Nath S K, and Kumar S, Mater Sci Forum 710 (2012) 500. https://doi.org/10.4028/www.scientific.net/msf.710.500.

    Article  CAS  Google Scholar 

  5. Akhiate, A., Braud, E., Thibault, D., & Brochu, M. Carbon content and heat treatment effects on microstructures and mechanical properties of 13%Cr–4%Ni martensitic stainless steel. COM 2014, Conference of Metallurgist (2014: Vancouver). Vancouver, Canadá.

  6. Bashu S A, Singh K, and Rawat M S, Mater Sci Eng A 127 (1990) 7. https://doi.org/10.1016/0921-5093(90)90184-5.

    Article  Google Scholar 

  7. De Sanctis M, Lovicu G, Buccioni M, Donato A, Richetta M, and Varone A, Metals (Basel) (2017). https://doi.org/10.3390/met7090351.

    Article  Google Scholar 

  8. Zhang S, Wang P, Li D, and Li Y, Mater Des 84 (2015) 385. https://doi.org/10.1016/j.matdes.2015.06.143.

    Article  CAS  Google Scholar 

  9. Severo F S, Scheuer C J, Cardoso R P, and Brunatto S F, Wear 428–429 (2019) 162. https://doi.org/10.1016/j.wear.2019.03.009.

    Article  CAS  Google Scholar 

  10. Grewal H S, Arora H S, Singh H, and Agrawal A, Appl Surf Sci 268 (2013) 547. https://doi.org/10.1016/j.apsusc.2013.01.006.

    Article  CAS  Google Scholar 

  11. Kishor B, Chaudhari G P, and Nath S K, Tribol Int 93 (2016) 50. https://doi.org/10.1016/j.triboint.2015.08.048.

    Article  CAS  Google Scholar 

  12. Kishor B, Chaudhari G P, and Nath S K, Wear 319 (2014) 150. https://doi.org/10.1016/j.wear.2014.07.024.

    Article  CAS  Google Scholar 

  13. Mann B S, and Arya V, Wear 249 (2001) 354. https://doi.org/10.1016/s0043-1648(01)00537-3.

    Article  CAS  Google Scholar 

  14. Grewal H S, Agrawal A, and Singh H, Tribol Int 66 (2013) 296. https://doi.org/10.1016/j.triboint.2013.06.010.

    Article  CAS  Google Scholar 

  15. Nath G, and Kumar S, Metallogr Microstruct Anal 7 (2018) 133. https://doi.org/10.1007/s13632-018-0426-5.

    Article  CAS  Google Scholar 

  16. Mishra S, Mishra A, Show B K, and Maity J, Mater Sci Eng A 688 (2017) 262. https://doi.org/10.1016/j.msea.2017.02.003.

    Article  CAS  Google Scholar 

  17. Mishra A, and Maity J, Mater Sci Eng A 646 (2015) 169. https://doi.org/10.1016/j.msea.2015.08.018.

    Article  CAS  Google Scholar 

  18. Ravi Kumar B, Sharma S, Kashyap B P, and Prabhu N, Mater Des 68 (2015) 63. https://doi.org/10.1016/j.matdes.2014.12.014.

    Article  CAS  Google Scholar 

  19. Kishor B, Chaudhari G P, and Nath S K, Tribol Int 119 (2018) 411. https://doi.org/10.1016/j.triboint.2017.11.025.

    Article  CAS  Google Scholar 

  20. Morito S, Yoshida H, Maki T, and Huang X, Mater Sci Eng A 440 (2006) 237. https://doi.org/10.1016/j.msea.2005.12.048.

    Article  CAS  Google Scholar 

  21. Galindo-Nava E I, and Rivera-Díaz-del-Castillo P E, Acta Mater 98 (2015) 81. https://doi.org/10.1016/j.actamat.2015.07.018.

    Article  CAS  Google Scholar 

  22. Kitahara H, Ueji R, Tsuji N, and Minamino Y, Acta Mater 54 (2006) 1279. https://doi.org/10.1016/j.actamat.2005.11.001.

    Article  CAS  Google Scholar 

  23. Hidalgo J, and Santofimia M J, Metall Mater Trans A Phys Metall Mater Sci 47 (2016) 5288. https://doi.org/10.1007/s11661-016-3525-4.

    Article  CAS  Google Scholar 

  24. Kim H J, Kim Y H, and Morris J W, ISIJ Int 38 (1998) 1277. https://doi.org/10.2355/isijinternational.38.1277.

    Article  CAS  Google Scholar 

  25. Nasiri Z, Ghaemifar S, Naghizadeh M, and Mirzadeh H, Met Mater Int (2020). https://doi.org/10.1007/s12540-020-00700-1.

    Article  Google Scholar 

  26. Wang P, Lu S P, Xiao N M, Li D Z, and Li Y Y, Mater Sci Eng A 527 (2010) 3210. https://doi.org/10.1016/j.msea.2010.01.085.

    Article  CAS  Google Scholar 

  27. Wang X D, Zhong N, Rong Y H, Hsu T Y, and Wang L, J Mater Res 24 (2009) 260. https://doi.org/10.1557/jmr.2009.0029.

    Article  CAS  Google Scholar 

  28. Zhang C, Wang Q, Ren J, Li R, Wang M, Zhang F, and Sun K, Mater Sci Eng A 534 (2012) 339. https://doi.org/10.1016/j.msea.2011.11.078.

    Article  CAS  Google Scholar 

  29. Mohan S, Prakash V, and Pathak J P, Wear 252 (2002) 16. https://doi.org/10.1016/s0043-1648(01)00834-1.

    Article  CAS  Google Scholar 

  30. Ho J W, Noyan C, Cohen J B, Khanna V D, and Eliezer Z, Wear 84 (1983) 183. https://doi.org/10.1016/0043-1648(83)90263-6.

    Article  Google Scholar 

  31. Rakesh Kumar G, and Suresh Kumar Reddy N, Mater Today Proc (2020). https://doi.org/10.1016/j.matpr.2020.01.509.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Nath, S.K. Improvement in Mechanical Properties and Wear Resistance of 13Cr–4Ni Martensitic Steel by Cyclic Heat Treatment. Trans Indian Inst Met 73, 2519–2528 (2020). https://doi.org/10.1007/s12666-020-02043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02043-2

Keywords

Navigation