Skip to main content
Log in

Upper and Lower Bounds and Modulus of Continuity of Decomposed Möbius Energies

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The Möbius energy is one of the knot energies, and is named after its Möbius invariant property. It is known to have several different expressions. One is in terms of the cosine of conformal angle, and is called the cosine formula. Another is the decomposition into Möbius invariant parts, called the decomposed Möbius energies. Hence the cosine formula is the sum of the decomposed energies. This raises a question. Can each of the decomposed energies be estimated by the cosine formula? Here we give an affirmative answer: the upper and lower bounds, and modulus of continuity of decomposed parts can be evaluated in terms of the cosine formula. In addition, we provide estimates of the difference in decomposed energies between the two curves in terms of Möbius invariant quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auckly, D., Sadun, L.: A family of Möbius invariant 2-knot energies, in “Geometric Topology, Proceedings of the 1993 Georgia International Conference (University of Georgia, Athens, Georgia)”, Teil 1 (Ed.: W. H. Kazez), AMS/IP Studies in Advanced Mathematics, American Mathematical Society and International Press, Cambridge, pp. 235–258 (1997)

  2. Blatt, S.: Boundedness and regularizing effects of O’Hara’s knot energies. J. Knot Theory Ramifications 21, 1250010 (2012)

    Article  MathSciNet  Google Scholar 

  3. Blatt, S.: Curves between Lipschitz and \(C^1\) and their relation to geometric knot theory. J. Geom. Anal. 29(4), 3270–3292 (2019)

    Article  MathSciNet  Google Scholar 

  4. Blatt, S., Reiter, Ph, Schikorra, A.: Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth. Trans. Am. Math. Soc. 368(9), 6391–6438 (2016)

    Article  Google Scholar 

  5. Blatt, S., Reiter, Ph., Schikorra, A.: On O’Hara knot energies I: regularity for critical knots. arXiv:1905.06064

  6. Blatt, S., Vorderobermeier, N.: On the analyticity of critical points of the Möbius energy. Calc. Var. Partial Differ. Equ. 58 (1), Paper No. 16 (2019)

  7. Freedman, M.H., He, Z.-X., Wang, Z.: Möbius energy of knots and unknots. Ann. Math. 139(1), 1–50 (1994)

    Article  MathSciNet  Google Scholar 

  8. Gromov, M.: Homotopical effects of dilatation. J. Differ. Geom. 13(3), 303–310 (1978)

    MathSciNet  MATH  Google Scholar 

  9. Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983)

    Article  MathSciNet  Google Scholar 

  10. Ishizeki, A., Nagasawa, T.: A decomposition theorem of the Möbius energy I: decomposition and Möbius invariance. Kodai Math. J. 37(3), 737–754 (2014)

    Article  MathSciNet  Google Scholar 

  11. Ishizeki, A., Nagasawa, T.: A decomposition theorem of the Möbius energy II: variational formulae and estimates. Math. Ann. 363(1–2), 617–635 (2015)

    Article  MathSciNet  Google Scholar 

  12. Ishizeki, A., Nagasawa, T.: The invariance of decomposed Möbius energies under the inversions with center on curves. J. Knot Theory Ramifications 26, 1650009 (2016)

    Article  Google Scholar 

  13. Ishizeki, A., Nagasawa, T.: The \( L^2 \)-gradient of decomposed Möbius energies. Calc. Var. Partial Differ. Equ. 55 (3), Art. No. 56 (2016)

  14. Kusner, R., Sullivan, J. M.: On distortion and thickness of knots, in “Topology and geometry in polymer science (Minneapolis, MN, 1996)”, IMA Vol. Math. Appl. 103, Springer, New York, pp. 67–78 (1998)

  15. Kusner, R., Sullivan, J.M.: Möbius-invariant knot energies, in “Ideal Knots”. In: Stasiak, A., Katrich, V., Kauffman, L.H. (eds.) Series on Knots and Everything, vol. 19, pp. 315–352. World Scientific, Singapore (1998)

    Google Scholar 

  16. O’Hara, J.: Energy of a knot. Topology 30(2), 241–247 (1991)

    Article  MathSciNet  Google Scholar 

  17. O’Hara, J.: Family of energy functionals of knots. Topol. Appl. 48(2), 147–161 (1992)

    Article  MathSciNet  Google Scholar 

  18. O’Hara, J.: Self-repulsiveness of energies for closed submanifolds. arXiv:2004.02351

  19. O’Hara, J., Solanes, G.: Möbius invariant energies and average linking with circles. Tôhoku Math. J. (2) 67(1), 51–82 (2015)

    MathSciNet  MATH  Google Scholar 

  20. O’Hara, J., Solanes, G.: Regularized Riesz energies of submanifolds. Math. Nachr. 291(8–9), 1356–1373 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to reviewers for comments and information of related articles. In particular, [3] improves our original statement of the second assertion of Corollary 1. One of reviewers gave us a suggestion which might be useful for analyzing the open problem in Sect. 5. We are also informed of the article [18] which appeared in arXiv after our submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeyuki Nagasawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Ishizeki: supported by KAKENHI (17J01429). T. Nagasawa: supported by KAKENHI (17K05310).

Appendix

Appendix

We derive the expression

$$\begin{aligned} \cos \varphi ( s_1 , s_2 ) = \frac{1}{2} \Vert \Delta \mathbf{f} \Vert ^2 \frac{ \partial ^2 }{ \partial s_1 \partial s_2 } \log \Vert \Delta \mathbf{f} \Vert ^2 \end{aligned}$$

for the conformal angle \( \varphi ( s_1 , s_2 ) \). Let \( C_{12}\) be the circle passing through two points \( \mathbf {f} (s_1)\) and \(\mathbf {f} (s_2)\) whose tangent line at \(\mathbf {f} (s_1)\) coincides with that of \(\mathrm {Im} \mathbf {f}\). And, let r and \( \mathbf{c} \) be the radius and center of \( C_{12} \), respectively. When \( \{ {\varvec{\tau }}( s_1 ) , \Delta \mathbf{f} \} \) is linearly dependent, we interpret \( C_{12} \) as the line passing through \( \mathbf{f} ( s_1 ) \) and \( \mathbf{f} ( s_2 ) \).

Case 1 \( \dim \mathrm {span} \{ {\varvec{\tau }}( s_1 ) , \Delta \mathbf{f} \} = 2 \). Since \( \Delta \mathbf{f} \) is not parallel to \( {\varvec{\tau }}( s_1 ) \) in the case,

$$\begin{aligned} \Vert \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) \Vert \ne 0 . \end{aligned}$$

We set

$$\begin{aligned} \mathbf{e} = - \frac{ ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) }{ \Vert \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) \Vert } . \end{aligned}$$

Then

$$\begin{aligned} \mathbf{c} = \mathbf{f} ( s_1 ) + r \mathbf{e} , \end{aligned}$$

and \( C_{12} \) is represented as

$$\begin{aligned} \mathbf{x} ( \theta ) - \mathbf{c} = \left( \cos \frac{\theta }{r} \right) ( \mathbf{f} ( s_1 ) - \mathbf{c} ) + r \left( \sin \frac{\theta }{r} \right) {\varvec{\tau }}( s_1 ) , \end{aligned}$$

where \( \theta \in {\mathbb {R}} / 2 \pi {\mathbb {Z}} \) is the arc-length parameter of \( C_{12} \). Since \( \mathbf{c} = \mathbf{f} ( s_1 ) + r \mathbf{e} \),

$$\begin{aligned} \mathbf{x} ( \theta ) =&\ \mathbf{f} ( s_1 ) + r \mathbf{e} - r \left( \cos \frac{\theta }{r} \right) \mathbf{e} + r \left( \sin \frac{\theta }{r} \right) {\varvec{\tau }}( s_1 ) , \\ {\dot{\mathbf{x }}} ( \theta ) =&\ \left( \sin \frac{\theta }{r} \right) \mathbf{e} + \left( \cos \frac{\theta }{r} \right) {\varvec{\tau }}( s_1 ) . \end{aligned}$$

Since \( C_{12} \) passes through \( \mathbf{f} ( s_2 ) \), there exists \( \theta _*\in {\mathbb {R}} / 2 \pi {\mathbb {Z}} \) such that \( \mathbf{x} ( \theta _*) = \mathbf{f} ( s_2 ) \). Hence

$$\begin{aligned} \mathbf{f} ( s_2 ) = \mathbf{f} ( s_1 ) + r \mathbf{e} - r \left( \cos \frac{ \theta _*}{r} \right) \mathbf{e} + r \left( \sin \frac{ \theta _*}{r} \right) {\varvec{\tau }}( s_1 ) , \end{aligned}$$

and therefore

$$\begin{aligned} r \mathbf{e} = - \Delta \mathbf{f} + r \left( \cos \frac{ \theta _*}{r} \right) \mathbf{e} - r \left( \sin \frac{ \theta _*}{r} \right) {\varvec{\tau }}( s_1 ) . \end{aligned}$$

Taking the inner product with \( \mathbf{e} \) and with \( {\varvec{\tau }}( s_1 ) \), we have

$$\begin{aligned} r =&\ - \Delta \mathbf{f} \cdot \mathbf{e} + r \cos \frac{ \theta _*}{r} , \\ 0 =&\ - \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) - r \sin \frac{ \theta _*}{r} . \end{aligned}$$

It follows from these that

$$\begin{aligned} r^2 =&\ r^2 \left( \cos ^2 \frac{ \theta _*}{r} + \sin ^2 \frac{ \theta _*}{r} \right) \\ =&\ \left( r + \Delta \mathbf{f} \cdot \mathbf{e} \right) ^2 + \left( - \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) \right) ^2 \\ =&\ \left( \Delta \mathbf{f} \cdot \mathbf{e} \right) ^2 + 2r \Delta \mathbf{f} \cdot \mathbf{e} + r^2 + \left( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) \right) ^2 \\ =&\ \Vert \Delta \mathbf{f} \Vert ^2 + 2r \Delta \mathbf{f} \cdot \mathbf{e} + r^2 . \end{aligned}$$

Note that \( \Delta \mathbf{f} \cdot \mathbf{e} \ne 0 \) when \( \dim \mathrm {span} \{ \Delta \mathbf{f} , {\varvec{\tau }}( s_1 ) \} = 2 \). Therefore we obtain

$$\begin{aligned} r = - \frac{ \Vert \Delta \mathbf{f} \Vert ^2 }{ 2 \Delta \mathbf{f} \cdot \mathbf{e} } . \end{aligned}$$

Now we calculate the cosine of the conformal angle:

$$\begin{aligned} \cos \varphi =&\ {\dot{\mathbf{x }}} ( \theta _*) \cdot {\varvec{\tau }}( s_2 ) \\ =&\ \left\{ \left( \sin \frac{ \theta _*}{r} \right) \mathbf{e} + \left( \cos \frac{ \theta _*}{r} \right) {\varvec{\tau }}( s_1 ) \right\} \cdot {\varvec{\tau }}( s_2 ) \\ =&\ - \frac{ \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) }{r} \mathbf{e} \cdot {\varvec{\tau }}( s_1 ) + \left( 1 + \frac{ \Delta \mathbf{f} \cdot \mathbf{e} }{r} \right) {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) \\ =&\frac{ 2 ( \Delta \mathbf{f} \cdot \mathbf{e} ) ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) }{ \Vert \Delta \mathbf{f} \Vert ^2 } ( \mathbf{e} \cdot {\varvec{\tau }}( s_2 ) ) + \left\{ 1 - \frac{ 2 ( \Delta \mathbf{f} \cdot \mathbf{e} )^2 }{ \Vert \Delta \mathbf{f} \Vert ^2 } \right\} {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) . \end{aligned}$$

Here

$$\begin{aligned} \Delta \mathbf{f} \cdot \mathbf{e} =&\ \Delta \mathbf{f} \cdot \left\{ - \frac{ \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) }{ \Vert \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) \Vert } \right\} \\ =&\ - \frac{ \Vert \Delta \mathbf{f} \Vert ^2 - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) )^2 }{ \Vert \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) \Vert } \\ =&\ - \Vert \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) \Vert ,\\ \mathbf{e} \cdot {\varvec{\tau }}( s_2 ) =&\ - \frac{ \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) }{ \Vert \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) \Vert } \cdot {\varvec{\tau }}( s_2 ) \\ =&\ - \frac{ ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_2 ) ) - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) ( {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) ) }{ \Vert \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) \Vert } . \end{aligned}$$

Consequently, we have

$$\begin{aligned} \cos \varphi =&\ \frac{ 2 ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) \{ ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_2 ) ) - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) ( {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) ) \} }{ \Vert \Delta \mathbf{f} \Vert ^2 } \\&\quad + \, \left[ 1 - \frac{ 2 \Vert \Delta \mathbf{f} - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) {\varvec{\tau }}( s_1 ) \Vert ^2 }{ \Vert \Delta \mathbf{f} \Vert ^2 } \right] {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) \\ =&\ \frac{ 2 ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_2 ) ) }{ \Vert \Delta \mathbf{f} \Vert ^2 } - \frac{ 2 ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) )^2 ( {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) ) }{ \Vert \Delta \mathbf{f} \Vert ^2 } \\&\quad + \, \left[ 1 - \frac{ 2 \{ \Vert \Delta \mathbf{f} \Vert ^2 - ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) )^2 \} }{ \Vert \Delta \mathbf{f} \Vert ^2 } \right] ( {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) ) \\ =&\ \frac{ 2 ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_2 ) ) }{ \Vert \Delta \mathbf{f} \Vert ^2 } - ( {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) ) \\ =&\ \frac{1}{2} \Vert \Delta \mathbf{f} \Vert ^2 \frac{ \partial ^2 }{ \partial s_1 \partial s_2 } \log \Vert \Delta \mathbf{f} \Vert ^2 . \end{aligned}$$

Case 2 \( \dim \mathrm {span} \{ {\varvec{\tau }}( s_1 ) , \Delta \mathbf{f} \} = 1 \). In this case \( C_{12} \) can be interpreted as the line passing through \( \mathbf{f} ( s_1 ) \) and \( \mathbf{f} ( s_2 ) \). Therefore

$$\begin{aligned} \cos \varphi = {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) . \end{aligned}$$

Also we have

$$\begin{aligned} \Delta \mathbf{f} = \pm \Vert \Delta \mathbf{f} \Vert {\varvec{\tau }}( s_1 ) . \end{aligned}$$

Hence

$$\begin{aligned}&\frac{1}{2} \Vert \Delta \mathbf{f} \Vert ^2 \frac{ \partial ^2 }{ \partial s_1 \partial s_2 } \log \Vert \Delta \mathbf{f} \Vert ^2 \\&\quad = \frac{ 2 ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_1 ) ) ( \Delta \mathbf{f} \cdot {\varvec{\tau }}( s_2 ) ) }{ \Vert \Delta \mathbf{f} \Vert ^2 } - ( {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) ) \\&\quad = \frac{ 2 ( \pm \Vert \Delta \mathbf{f} \Vert ) ( \pm \Vert \Delta \mathbf{f} \Vert {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) ) }{ \Vert \Delta \mathbf{f} \Vert ^2 } - ( {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) ) \\&\quad = {\varvec{\tau }}( s_1 ) \cdot {\varvec{\tau }}( s_2 ) = \cos \varphi . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizeki, A., Nagasawa, T. Upper and Lower Bounds and Modulus of Continuity of Decomposed Möbius Energies. J Geom Anal 31, 5659–5686 (2021). https://doi.org/10.1007/s12220-020-00496-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00496-x

Keywords

Mathematics Subject Classification

Navigation