Skip to main content
Log in

Survival probability of a lazy prey on lattices and complex networks

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We develop a framework to analyse the survival probability of a prey following a minimal effort evasion strategy, that is being chased by N predators on finite lattices or complex networks. The predators independently perform random walks if the prey is not within their sighting radius, whereas, the prey only moves when a predator moves onto a node within its sighting radius. We verify the proposed framework on three different finite lattices with periodic boundaries through numerical simulations and find that the survival probability (Psur) decays exponentially with a decay rate proportional to P(N, k) (number of permutations), where k is the minimum number of predators required to capture a prey. We then extend the framework onto complex networks and verify its robustness on the networks generated by the Watts-Strogatz (W-S), Barabási-Albert (B-A) models and a few real-world networks. Our analysis predicts that, for the considered lattices, Psur reduces as the degree of the nodes of the lattice is increased. However, for networks, Psur initially increases with the average degree of the nodes, reaches a maximum, and then decreases. Furthermore, we analyse the effect of the long-range connections in networks on Psur in W-S networks. The proposed framework enables one to study the survival probability of such a prey being hunted by multiple predators on any given structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Nahin, Chases and Escapes: The Mathematics of Pursuit and Evasion (Princeton University Press, 2012)

  2. D. Weihs, P.W. Webb, J. Theor. Biol. 106, 189 (1984)

    Article  Google Scholar 

  3. G.F. Miller, D. Cliff, Co-Evolution of Pursuit and Evasion I: Biological and Game-Theoretic Foundations (University of Sussex, School of Cognitive and Computing Sciences, 1994)

  4. P. Krapivsky, S. Redner, J. Phys. A: Math. Gen. 29, 5347 (1996)

    Article  ADS  Google Scholar 

  5. R. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization (Courier Corporation, 1999)

  6. A. Blumen, G. Zumofen, J. Klafter, Phys. Rev. B 30, 5379 (1984)

    Article  ADS  Google Scholar 

  7. A. Kamimura, T. Ohira, New J. Phys. 12, 053013 (2010)

    Article  ADS  Google Scholar 

  8. T. Iwama, M. Sato, Phys. Rev. E 86, 067102 (2012)

    Article  ADS  Google Scholar 

  9. R. Nishi, A. Kamimura, K. Nishinari, T. Ohira, Physica A: Stat. Mech. Appl. 391, 337 (2012)

    Article  ADS  Google Scholar 

  10. J. Sćepanović, A. Karač, Z. Jakšić, L. Budinski-Petković, S. Vrhovac, Physica A: Stat. Mech. Appl. 525, 450 (2019)

    Article  ADS  Google Scholar 

  11. A. Sengupta, T. Kruppa, H. Löwen, Phys. Rev. E 83, 031914 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. A.E. Magurran, T.J. Pitcher, Proc. R. Soc. London, Ser. B: Biol. Sci. 229, 439 (1987)

    Article  ADS  Google Scholar 

  13. O.H. Abdelrahman, E. Gelenbe, Phys. Rev. E 87, 032125 (2013)

    Article  ADS  Google Scholar 

  14. T. Basar, G.J. Olsder Dynamic Noncooperative Game Theory, Vol. 23 (Siam, 1999)

    Article  Google Scholar 

  15. T. Weng, H. Yang, C. Gu, J. Zhang, P. Hui, M. Small, Commun. Nonlinear Sci. Numer. Simul. 79, 104911 (2019)

    Article  MathSciNet  Google Scholar 

  16. V.K. Kaliappan, H. Yong, A. Budiyono, D. Min, in International Conference on Hybrid Information Technology (Springer, 2011) pp. 520--529

  17. J.A. Baggio, K. Salau, M.A. Janssen, M.L. Schoon, Ö. Bodin, Landsc. Ecol. 26, 33 (2011)

    Article  Google Scholar 

  18. K. Salau, M.L. Schoon, J.A. Baggio, M.A. Janssen, Ecol. Model. 242, 81 (2012)

    Article  Google Scholar 

  19. R. Nathan, Proc. Natl. Acad. Sci. U.S.A. 105, 19050 (2008)

    Article  ADS  Google Scholar 

  20. L. Stucchi, J. Galeano, D.A. Vasquez, Phys. Rev. E 100, 062414 (2019)

    Article  ADS  Google Scholar 

  21. D. Chakraborty, S. Bhunia, R. De, Sci. Rep. 10, 8362 (2020)

    Article  ADS  Google Scholar 

  22. R. Nathan, W.M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, P.E. Smouse, Proc. Natl. Acad. Sci. U.S.A. 105, 19052 (2008)

    Article  ADS  Google Scholar 

  23. A. Bonato The Game of Cops and Robbers on Graphs (AMS, 2011)

    Article  Google Scholar 

  24. E. Ravasz, A.-L. Barabási, Phys. Rev. E 67, 026112 (2003)

    Article  ADS  Google Scholar 

  25. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  26. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  27. A.R. Benson, D.F. Gleich, J. Leskovec, Science 353, 163 (2016)

    Article  ADS  Google Scholar 

  28. J. Menche, A. Sharma, M. Kitsak, S.D. Ghiassian, M. Vidal, J. Loscalzo, A.-L. Barabási, Science 347, 1257601 (2015)

    Article  Google Scholar 

  29. E. Guney, J. Menche, M. Vidal, A.-L. Barábasi, Nat. Commun. 7, 10331 (2016)

    Article  ADS  Google Scholar 

  30. G. Kossinets, D.J. Watts, Science 311, 88 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Gao, B. Barzel, A.-L. Barabási, Nature 530, 307 (2016)

    Article  ADS  Google Scholar 

  32. T. Verma, N.A. Araújo, H.J. Herrmann, Sci. Rep. 4, 5638 (2014)

    Article  ADS  Google Scholar 

  33. N. Masuda, F. Meng, Proc. R. Soc. A: Math. Phys. Eng. Sci. 475, 20190291 (2019)

    Article  ADS  Google Scholar 

  34. R.S. Yi, Á. Arredondo, E. Stansifer, H. Seybold, D.H. Rothman, Proc. R. Soc. A: Math. Phys. Eng. Sci. 474, 20180081 (2018)

    Article  ADS  Google Scholar 

  35. G. Oshanin, O. Vasilyev, P.L. Krapivsky, J. Klafter, Proc. Natl. Acad. Sci. U.S.A. 106, 13696 (2009)

    Article  ADS  Google Scholar 

  36. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  37. A.L. Barabasi, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  38. D.R. Cox, Analysis of Survival Data (Chapman and Hall/CRC, 2018)

  39. V. Kishore, M. Santhanam, R. Amritkar, Phys. Rev. Lett. 106, 188701 (2011)

    Article  ADS  Google Scholar 

  40. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  41. R.A. Rossi, N.K. Ahmed, NetworkRepository: A graph data repository with visual interactive analytics, in 29th AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 2015 (AAAI, 2015) pp. 25--30

  42. M. Barthelemy, Morphogenesis of Spatial Networks (Springer, 2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Panigrahi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patwardhan, S., De, R. & Panigrahi, P.K. Survival probability of a lazy prey on lattices and complex networks. Eur. Phys. J. E 43, 53 (2020). https://doi.org/10.1140/epje/i2020-11979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11979-2

Keywords

Navigation