Skip to main content
Log in

Density functional study on structural and optoelectronic properties of cubic \(\hbox {Mg}_{x}\hbox {Zn}_{1-x}\hbox {S}_{y}\hbox {Se}_{1-y}\) semiconductor quaternary alloys

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the case of technologically important quaternary alloys, structural and optoelectronic properties have been calculated with density functional theory (DFT)-based full-potential linearised augmented plane-wave (FP-LAPW) approach. The Perdew–Burke–Ernzerhof generalised gradient approximation (PBE-GGA) for structural properties and both the modified-Becke–Johnson (mBJ) and Engel and Vosko GGA (EV-GGA) for optoelectronic properties are employed to calculate the respective exchange-correlation potentials. Each specimen within the quaternary system is a direct band-gap – semiconductor. The lattice constant decreases, while bulk modulus and band gap increase nonlinearly with increasing anionic (S) concentration at each cationic (Mg) concentration . On the other hand, nonlinear increment in lattice constant and band gap, but decrement in bulk modulus is found with increase in cationic concentration at each anionic concentration . Calculated contour maps for lattice constants and energy band gaps would be useful in fabricating new quaternary alloys with preferred optoelectronic features. Optical properties of the specimens within the quaternary system show several interesting features. , 4p and 4p optical excitations contribute intense peaks in each spectrum. The composition dependence of each calculated zero-frequency limit shows opposite trend, while each calculated critical point shows similar trend of composition dependence of band gap. Moreover, calculations suggest the possibility of growth of several cubic quaternary specimens on GaAs and InP substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X Fang, T Zhai, U K Gautam, L Li, L Wu, Y Bando and D Golberg, Prog. Mater. Sci. 56, 175 (2011)

  2. M A Hasse, J Qui, J M De Puydt and H Cheng, Appl. Phys. Lett59, 1272 (1991)

    ADS  Google Scholar 

  3. M C Tamargo, M J S P Brasil, R E Nahory, R J Martin, A L Weaver and H L Gilchrist, Semicond. Sci. Technol. 6, A8 (1991)

    ADS  Google Scholar 

  4. H P Wagner, S Wittmann, H Schmitzer and H Stanzl, J. Appl. Phys. 77, 3637 (1995)

    ADS  Google Scholar 

  5. S Albin, J D Satira, D L Livingston and T A Shull, Jpn. J. Appl. Phys31, 715 (1992)

    ADS  Google Scholar 

  6. M W Wang, J F Swenberg, M C Phillips, E T Yu and J O McCaldin, Appl. Phys. Lett. 64, 3455 (1994)

    ADS  Google Scholar 

  7. R J Nelmes and M I McMohan, Semicond. Semimetals 54, 145 (1998)

    Google Scholar 

  8. L Konczenwicz, P Bigenwal, T Cloitre, M Chibane, R Ricou, P Testuo, O Briot and R L Aulombard, J. Crystal Growth 159, 117 (1996)

    ADS  Google Scholar 

  9. H Okuyama, K Nakano, T Miyajima and K Akimoto, J. Crystal Growth 117, 139 (1992)

    ADS  Google Scholar 

  10. O Medelung (Ed.), Landolt Bornstein: Numerical data and functional relationship in science and technology (Springer, Berlin, 1982) Vol. 17b

    Google Scholar 

  11. N Kh Abrikosov, V B Bankina, L V Poretskaya, L E Shelimova and E V Skudnova, Semiconducting II–VI, IV–VI and V–VI compounds (Plenum, New York, 1969)

    Google Scholar 

  12. W H Strehlow and E L Cook, J. Phys. Chem. Ref. Data 2, 163 (1973)

    ADS  Google Scholar 

  13. A Manabe, A Mitsuishi and H Yoshinaga, Jpn. J. Appl. Phys6, 593 (1967)

    ADS  Google Scholar 

  14. S J Czyzak, W M Barker, R C Crane and J B Howe, J. Opt. Soc. Am. 47, 240 (1957)

    ADS  Google Scholar 

  15. B H Lee, J. Appl. Phys. 41, 2988 (1970)

    ADS  Google Scholar 

  16. S Ves, U Schwarz, N E Christensen, K Syassen and M Cardona, Phys. Rev. B 42, 9113 (1990)

    ADS  Google Scholar 

  17. B Jobst, D Hommel, U Lunz, T Gerhard and G Landwehr, Appl. Phys. Lett. 69, 97 (1996)

    ADS  Google Scholar 

  18. K Watanabe, M Th Litz, M Korn, W Ossau, A Waag, G Landwehr and U Schussler, J. Appl. Phys. 81, 451 (1997)

    ADS  Google Scholar 

  19. M Reghima, C Guasch and N K Turki, J. Mater. Sci. Mater. Electron. 27, 7297 (2016)

    Google Scholar 

  20. A U Ubale, Y S Sakhare, S G Ibrahim and M R Belkhedkar, Solid State Sci. 23, 96 (2013)

    ADS  Google Scholar 

  21. A Wei, J Liu, M Zhuang and Y Zhao, Mater. Sci. Semicond. Process. 16, 1478 (2013)

    Google Scholar 

  22. Y D Kim, S L Cooper and M V Klein, Appl. Phys. Lett. 62, 2387 (1993)

    ADS  Google Scholar 

  23. W C Chou, C S Yang, A H M Chu, A J Yeh, C S Ro, W H Lan, S L Tu, R C Tu, S C Chou, Y K Su and W Y Uen, J. Appl. Phys. 84, 2245 (1998)

    ADS  Google Scholar 

  24. S Park, H Kim, C Jin and C Lee, Current Appl. Phys. 12, 499 (2012)

    ADS  Google Scholar 

  25. L J Chen, C R Lee, Y J Chuang, Z H Wub and C Chenc, Cryst. Eng. Commun. 17, 4434 (2015)

    Google Scholar 

  26. D Shen, S Y Au, X X Zhang, I K Sou, G Han and D Que, Fiber Integrated Opt. 22, 25 (2003)

    ADS  Google Scholar 

  27. K Yoshimura, Y Yamada and T Taguchi, J. Crystal Growth 214\(/\)215, 364 (2000)

  28. K J Kim, M H Lee, J H Bahng, C Y Kwak and E Oh, Solid State Commun. 105, 17 (1998)

    ADS  Google Scholar 

  29. M Th Litz, K Watanabe, M Korn, H Ress, U Lunz, W Ossau, A Waag, G Landwehr, Th Walter, B Neubauer, D Gerthsen and U Schussler, J. Crystal Growth 159, 54 (1996)

    ADS  Google Scholar 

  30. H Okuyama, K Nakano, T Miyaiima and K Akimoto, Jpn. J. Appl. Phys. 30, Ll620 (1991)

    Google Scholar 

  31. N Nakayama, S Itoh, H Okuyama, M Ozawa, T Ohata, K Nakano, M Ikeda, A Ishibashi and Y Mori, Electron. Lett. 29, 2194 (1993)

    ADS  Google Scholar 

  32. N Nakayama, S Itoh, T Ohata, K Nakano, H Okuyama, M Ozawa, A Ishibashi, M Ikeda and Y Mori, Electron. Lett. 29, 1488 (1993)

    ADS  Google Scholar 

  33. X J Chen, A Mintz, J S Hu, X L Hua, J Zinck and W A Goddard-III, J. Vac. Sci. Technol. B 13, 1715 (1995)

    Google Scholar 

  34. F Kootstra, P L de Boeij and J G Snijders, Phys. Rev. B 62, 7071 (2000)

    ADS  Google Scholar 

  35. S G Lee and K J Chang, Phys. Rev. B 52, 1918 (1995)

    ADS  Google Scholar 

  36. R A Casali and N E Christensen, Solid State Commun. 108, 793 (1998)

    ADS  Google Scholar 

  37. M Bilal, M Shafiq, I Ahmad and I Khan, J. Semicond. 35, 072001 (2014)

    ADS  Google Scholar 

  38. A D Corsa, S Baroni, R Resta and S Gironcoli, Phys. Rev. B 47, 3588 (1993)

    ADS  Google Scholar 

  39. H Y Wang, J Cao, X Y Huang and J M Huang, Cond. Matter Phys. 15, 13705 (2012)

    Google Scholar 

  40. Z Charifi, H Baaziz and N Bouarissa, Mater. Chem. Phys.  84, 273 (2004)

    Google Scholar 

  41. K Kabita and B Indrajit Sharma, Pramana – J. Phys.  89: 13 (2017), https://doi.org/10.1007/s12043-017-1405-0

    Article  ADS  Google Scholar 

  42. F Drief, A Tadjer, D Mesri and H Aourag, Catal. Today 89, 343 (2004)

    Google Scholar 

  43. S Duman, S Bagci, H M Tutuncu and G P Srivastava, Phys. Rev. B 73, 205201 (2006)

    ADS  Google Scholar 

  44. G Gokoglu, M Durandurdu and O Gulseren, Comput. Mater. Sci. 47, 593 (2009)

    Google Scholar 

  45. F El Haj Hassan, B Amrani and F Bahsoun, Physica B 391, 363 (2007)

    ADS  Google Scholar 

  46. A Bechiria, F Benmakhlouf and N Bouarissa, Phys. Procedia 2, 803 (2009)

    ADS  Google Scholar 

  47. F El Haj Hassan and B Amrani, J. Phys.: Condens. Matter 19, 386234 (2007)

    ADS  Google Scholar 

  48. A Sajid, A Afaq and G Murtaza, Chin. J. Phys. 51, 316 (2013)

    Google Scholar 

  49. N Ullah, G Murtaza, R Khenata, J Rehman, H UdDin and S Bin Omran, Mater. Sci. Semicond. Process. 26, 681 (2014)

    Google Scholar 

  50. Z Charifi, F El Haj Hassan, H Baaziz, Sh Khosravizadeh, S J Hashemifar and H Akbarzadeh, J. Phys.: Condens. Matter 17, 7077 (2005)

    ADS  Google Scholar 

  51. G Murtaza, N Ullah, A Rauf, R Khenata, S Bin Omran, M Sajjad and A Waheed, Mater. Sci. Semicond. Process. 30, 462 (2015)

    Google Scholar 

  52. N A Noor and A Shaukat, Int. J. Mod. Phys. B 26, 1250168 (2012)

    ADS  Google Scholar 

  53. H Okuyama, Y Kishita and A Ishibashi, Phys. Rev. B 57, 2257 (1998)

    ADS  Google Scholar 

  54. F El Haj Hassan, A Bleybel, A Hijazi, A Alaeddine, B Beydoun and M Zoaeter, Mater. Lett. 61, 1178 (2007)

    Google Scholar 

  55. Z Charifi, H Baaziz and N Bouarissa, Physica B 337, 363 (2003)

    ADS  Google Scholar 

  56. A R Jivani and A R Jani, Int. J. Mod. Phys. B 29, 1550132 (2015)

    ADS  Google Scholar 

  57. M Rabah, B Abbar, Y Al-Douri, B Bouhafs and B Sahraoui, Mater. Sci. Eng. B 100, 163 (2003)

    Google Scholar 

  58. P Blaha, K Schwarz, P Sorantin and S K Trickey, Comput. Phys. Commun. 59, 339 (1990)

    Google Scholar 

  59. P Blaha, K Schwarz, G H Madsen, D Kbasnicka and J Luitz, FP-LAPW\(+\)lo Program for calculating crystal properties edited by K Schwarz (Techn. WIEN2K, Austria, 2001)

  60. P Hohenberg and W Kohn, Phys. Rev. B 136, 864 (1964)

    ADS  Google Scholar 

  61. W Kohn and L J Sham, Phys. Rev. A 140, 1133 (1965)

    ADS  Google Scholar 

  62. O K Andersen, Phys. Rev. B 42, 3063 (1975)

    Google Scholar 

  63. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  64. A D Becke and E R Johnson, J. Chem. Phys. 124, 221101 (2006)

    ADS  Google Scholar 

  65. F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  66. E Engel and S H Vosko, Phys. Rev. B 47, 13164 (1993)

    ADS  Google Scholar 

  67. A Kokalj, Comput. Mater. Sci. 28, 155 (2003), Code available from http://www.xcrysden.org/

  68. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    ADS  Google Scholar 

  69. L Vegard, Z. Phys. 5, 17 (1921)

    ADS  Google Scholar 

  70. J P Dismukes, L Ekstrom and R J Paff, J. Phys. Chem. 68, 3021 (1964)

    Google Scholar 

  71. M Fox, Optical properties of solids (Oxford University Press, UK, 2001)

    Google Scholar 

  72. C Sifi, H Meradrji, M Silmani, S Labidi, S Ghemid, E B Hanneche and F El Haj Hassan, J. Phys.: Condens. Matter 21, 195401 (2009)

    ADS  Google Scholar 

  73. M Dadsetani and A Pourghazi, Phys. Rev. B 73, 195102 (2006)

    ADS  Google Scholar 

  74. D R Penn, Phys. Rev. 128, 2093 (1962)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Tripura University to provide all the necessary facilities and funding to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Chattopadhyaya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 41754 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Chanda, S., Debnath, B. et al. Density functional study on structural and optoelectronic properties of cubic \(\hbox {Mg}_{x}\hbox {Zn}_{1-x}\hbox {S}_{y}\hbox {Se}_{1-y}\) semiconductor quaternary alloys. Pramana - J Phys 94, 120 (2020). https://doi.org/10.1007/s12043-020-01975-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01975-0

Keywords

PACS Nos

Navigation