Skip to main content
Log in

Variability in primary productivity and bio-optical properties in the Indian sector of the Southern Ocean during an austral summer

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Southern Ocean (SO), in spite of its major contribution to global primary productivity (PP), remains underexplored in this aspect. Light being the most limiting parameter affecting primary production, it is crucial to study the ambient light field to understand PP and associated processes. The current study makes a dual effort to present PP estimates as well as understand the bio-optical variability in the Indian sector of the Southern Ocean (ISSO). Results suggest that PP was highest at Sub-Tropical Front (STF) and lowest at Polar Front-2 (PF2). Most PP profiles were characterized by subsurface maxima, indicating probable photoinhibition or micronutrient limitation at surface layer. Strong correlation between measured and satellite-based integrated PP (R2 = 0.94, RMSE = 77.48, p < 0.01) indicated the efficacy of global models in their original formulation in bio-optically complex SO waters. The maximum photochemical efficiency of phytoplankton (Fv/Fm) measured by fast repetition rate fluorometry varied from 0.1–0.4, implying reduced phytoplankton photosynthetic efficiency in ISSO. The ratio between remote sensing reflectance (Rrs)-derived phytoplankton absorption (aph) at blue-red band (B/R ratio) indicated dominance of smaller phytoplankton in surface and larger phytoplankton at subsurface. Higher Chl-a specific phytoplankton absorption (a*ph ) than phytoplankton absorption (aph) suggested an adaptation of dominant phytoplankton species to low light, yet a better light harvest efficiency. However, low contribution of aph suggested a strong influence of non-phytoplankton materials to the total absorption budget. We therefore infer that, the surrounding physical environment in terms of nutrients and bio-optical variability modulated phytoplankton size class and thereby productivity more critically in the surface than in the deeper layers of ISSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguilar-Maldonado J, Santamaría-del-Ángel E, González-Silvera A, Cervantes-Rosas O, López L, Gutiérrez-Magness A, Cerdeira-Estrada S, Sebastiá-Frasquet MT (2018) Identification of phytoplankton blooms under the index of Inherent Optical Properties (IOP index) in optically complex waters. Water 10(2):129. https://doi.org/10.3390/w10020129

    Article  CAS  Google Scholar 

  • Alcântara E, Watanabe F, Rodrigues T, Bernardo N (2016) An investigation into the phytoplankton package effect on the chlorophyll-a specific absorption coefficient in Barra Bonita reservoir, Brazil. Remote Sens Lett 8:761–770. https://doi.org/10.1080/2150704X.2016.1185189

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center NOAA, Boulder

    Google Scholar 

  • Aardema HM, Rijkeboer M, Lefebvre A, Veen A, Kromkamp JC (2019) High-resolution underway measurements of phytoplankton photosynthesis and abundance as an innovative addition to water quality monitoring programs. Ocean Sci 15(5):1267–1285. https://doi.org/10.5194/os-15-1267-2019

    Article  CAS  Google Scholar 

  • Arrigo KR, van Dijken G, Long M (2008) A strong anthropogenic CO2 sink. Geophys Res Lett. https://doi.org/10.1029/2008GL035624

    Article  Google Scholar 

  • Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G, Hoepffner N (2003) Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res. https://doi.org/10.1029/2001JC000882

    Article  Google Scholar 

  • Balch WM, Bowler BC, Lubelczyk LC, Stevens MW Jr (2014) Aerial extent, composition, bio-optics and biogeochemistry of a massive under-ice algal bloom in the Arctic. Deep Res Part II 105:42–58. https://doi.org/10.1016/j.dsr2.2014.04.001

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997a) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 1:1–20

    Article  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444(7120):752. https://doi.org/10.1038/nature05317

    Article  CAS  PubMed  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997b) A consumer's guide to phytoplankton primary productivity models. Limnol Oceanogr 42(7):1479–1491

    Article  Google Scholar 

  • Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res: Oceans 101(C2):3675–3696

    Article  Google Scholar 

  • Blain S, Trehguer P, Belviso S, Bucciarelli E, Denis M, Desabre S, Fiala M, Jehzehque VM, Fevre JL, Mayzaud P, Marty JC, Razouls S (2001) A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep Sea Res I 48:163–187. https://doi.org/10.1016/S0967-0637(00)00047-9

    Article  CAS  Google Scholar 

  • Boyd PW (2002) Environmental factors controlling phytoplankton processes in the Southern Ocean1. J Phycol 38(5):844–861. https://doi.org/10.1046/j.1529-8817.2002.t01-1-01203.x

    Article  Google Scholar 

  • Boyd PW, Abraham ER (2001) Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep Res Part II 48(11–12):2529–2550. https://doi.org/10.1016/S0967-0645(01)00007-8

    Article  CAS  Google Scholar 

  • Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J Geophys Res: Oceans 100(C7):13321–13332

    Article  Google Scholar 

  • Bricaud A, Morel A, Babin M, Allali K, Claustre H (1998) Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J Geophys Res 103(C13):31033–31044

    Article  Google Scholar 

  • Bricaud A, Babin M, Claustre H, Ras J, Tièche F (2010) Light absorption properties and absorption budget of Southeast Pacific waters. J Geophys Res. https://doi.org/10.1029/2009JC005517

    Article  Google Scholar 

  • Bricaud A, Claustre H, Ras J, Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J Geophys Res. https://doi.org/10.1029/2004JC002419

    Article  Google Scholar 

  • Bricaud A, Stramski D (1990) Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea. Limnol Oceanogr 35(3):562–582

    Article  CAS  Google Scholar 

  • Cheah W, McMinn A, Griffiths FB, Westwood KJ, Wright SW, Clementson LA (2013) Response of phytoplankton photophysiology to varying environmental conditions in the Sub-antarctic and polar frontal zone. PLoS ONE 8(8):e72165. https://doi.org/10.1371/journal.pone.0072165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland JS, Weidemann AD (1993) Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnol Oceanogr 38(6):1321–1327

    Article  CAS  Google Scholar 

  • Cota GF, Harrison WG, Platt T, Sathyendranath S, Stuart V (2003) Bio-optical properties of the Labrador Sea. J Geophys Res. https://doi.org/10.1029/2000jc000597

    Article  Google Scholar 

  • Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can J Fish Aquat Sci 39(5):791–803

    Article  CAS  Google Scholar 

  • Ferreira A, Stramski D, Garcia CA, Garcia VM, Ciotti ÁM, Mendes CR (2013) Variability in light absorption and scattering of phytoplankton in Patagonian waters: role of community size structure and pigment composition. J Geophys Res 118(2):698–714. https://doi.org/10.1002/jgrc.20082

    Article  Google Scholar 

  • Froneman PW, Pakhomov EA, Perissinotto R, Laubscher RK, McQuaid CD (1997) Dynamics of the plankton communities of the Lazarev Sea (Southern Ocean) during seasonal ice melt. Mar Ecol Prog Ser 149:201–214

    Article  Google Scholar 

  • Gandhi N, Ramesh R, Laskar AH, Sheshshayee MS, Shetye S, Anilkumar N, Patil SM, Mohan R (2012) Zonal variability in primary production and nitrogen uptake rates in the southwestern Indian Ocean and the Southern Ocean. Deep-Sea Res Part I 67:32–43. https://doi.org/10.1016/j.dsr.2012.05.003

    Article  CAS  Google Scholar 

  • Gervais F, Riebesell U, Gorbunov MY (2002) Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr 47(5):1324–1335. https://doi.org/10.4319/lo.2002.47.5.1324

    Article  CAS  Google Scholar 

  • Gomi Y, Fukuchi M, Taniguchi A (2010) Diatom assemblages at subsurface chlorophyll maximum layer in the eastern Indian sector of the Southern Ocean in summer. J Plankton Res 32(7):1039–1050. https://doi.org/10.1093/plankt/fbq031

    Article  CAS  Google Scholar 

  • Graham RM (2014) The role of Southern Ocean fronts in the global climate system (Doctoral dissertation, Department of Geological Sciences, Stockholm University)

  • Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG (2008) An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ 112(6):3153–3159. https://doi.org/10.1016/j.rse.2008.03.011

    Article  Google Scholar 

  • Hirawake T, Takao S, Horimoto N, Ishimaru T, Yamaguchi Y, Fukuchi M (2011) A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean. Polar Biol 34:291–302. https://doi.org/10.1007/s00300-010-0949-y

    Article  Google Scholar 

  • Holeton CL, Nedelec F, Sanders R, Brown L, Moore CM, Stevens DP, Heywood KJ, Statham PJ, Lucas CH (2005) Physiological state of phytoplankton communities in the Southwest Atlantic sector of the Southern Ocean, as measured by fast repetition rate fluorometry. Polar Biol 29:44–52. https://doi.org/10.1007/s00300-005-0028-y

    Article  Google Scholar 

  • Holliday NP, Read JF (1998) Surface oceanic fronts between Africa and Antarctica. Deep Sea Res I Part I 45(2–3):217–238

    Article  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684. https://doi.org/10.1146/annurev.arplant.47.1.655

    Article  CAS  PubMed  Google Scholar 

  • Hughes DJ, Campbell DA, Doblin MA, Kromkamp JC, Lawrenz E, Moore CM, Suggett DJ (2018) Roadmaps and detours: active chlorophyll-a assessments of primary productivity across marine and freshwater systems. Environ Sci Technol 52(21):12039–12054. https://doi.org/10.1021/acs.est.8b03488

    Article  CAS  PubMed  Google Scholar 

  • Hughes DJ, Croswell JR, Doblin MA, Oxborough K, Ralph PJ, Varkey D, Suggett DJ (2020) Dynamic variability of the phytoplankton electron requirement for carbon fixation in eastern Australian waters. J Marine Syst 202:103252. https://doi.org/10.1016/j.jmarsys.2019.103252

    Article  Google Scholar 

  • Jasmine P, Muraleedharan KR, Madhu NV, Devi CA, Alagarsamy R, Achuthankutty CT, Jayan Z, Sanjeevan VN, Sahayak S (2009) Hydrographic and productivity characteristics along 45 E longitude in the southwestern Indian Ocean and Southern Ocean during Austral summer 2004. Mar Ecol Prog Ser 389:97–116

    Article  Google Scholar 

  • Kemp AE, Grigorov I, Pearce RB, Garabato AN (2010) Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications. Quaternary Sci Rev 29(17–18):1993–2009. https://doi.org/10.1016/j.quascirev.2010.04.027

    Article  Google Scholar 

  • Kheireddine M, Ouhssain M, Organelli E, Bricaud A, Jones BH (2018) Light absorption by suspended particles in the Red Sea: effect of phytoplankton community size structure and pigment composition. J Geophys Res: Oceans 123(2):902–921. https://doi.org/10.1002/2017JC013279

    Article  Google Scholar 

  • Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37(2):634–642

    Google Scholar 

  • Knap AH, Michaels A, Close AR, Ducklow H, Dickson AG. (1996) Protocols for the joint global ocean flux study (JGOFS) core measurements.

  • Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38(8):1646–1665

    Article  CAS  Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88(3):923–929

    Article  CAS  Google Scholar 

  • Kostianoy AG, Ginzburg AI, Frankignoulle M, Delille B (2004) Fronts in the Southern Indian Ocean as inferred from satellite sea surface temperature data. J Mar Syst 45(1–2):55–73. https://doi.org/10.1016/j.jmarsys.2003.09.004

    Article  Google Scholar 

  • Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832):1735–1738. https://doi.org/10.1126/science.1136188

    Article  CAS  PubMed  Google Scholar 

  • Lee ZP, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41:5755–5772. https://doi.org/10.1364/AO.41.005755

    Article  PubMed  Google Scholar 

  • Lee ZP, Weidemann A, Kindle J, Arnone R, Carder KL, Davis C (2007) Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J Geophys Res. https://doi.org/10.1126/science.1136188

    Article  Google Scholar 

  • Levasseur ME, Therriault JC (1987) Phytoplankton biomass and nutrient dynamics in a tidally induced upwelling: the role of the NO3:SiO4 ratio. Mar Ecol Prog Ser 39:87–97

    Article  CAS  Google Scholar 

  • Lohrenz SE, Weidemann AD, Tuel M (2003) Phytoplankton spectral absorption as influenced by community size structure and pigment composition. J Plankton Res 25(1):35–61. https://doi.org/10.1093/plankt/25.1.35

    Article  CAS  Google Scholar 

  • Marra J, Trees CC, O’Reilly JE (2007) Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean. Deep-Sea Res Part I 54(2):155–163. https://doi.org/10.1016/j.dsr.2006.12.001

    Article  Google Scholar 

  • Matsuoka A, Huot Y, Shimada K, Saitoh SI, Babin M (2007) Bio-optical characteristics of the western Arctic Ocean: implications for ocean color algorithms. Can J Remote Sens 33(6):503–518

    Article  Google Scholar 

  • Matsuoka A, Larouche P, Poulin M, Vincent W, Hattori H (2009) Phytoplankton community adaptation to changing light levels in the southern Beaufort Sea. Can Arctic Estuar Coast Mar Sci 82(3):537–546. https://doi.org/10.1016/j.ecss.2009.02.024

    Article  CAS  Google Scholar 

  • Matsuoka A, Ortega-Retuerta E, Bricaud A, Arrigo KR, Babin M (2015) Characteristics of colored dissolved organic matter (CDOM) in the Western Arctic Ocean: relationships with microbial activities. Deep Res Part II 118:44–52. https://doi.org/10.1016/j.dsr2.2015.02.012

    Article  CAS  Google Scholar 

  • Mendes CR, Tavano VM, Dotto TS, Kerr R, De Souza MS, Garcia CA, Secchi ER (2018) New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep Res Part II 149:161–170. https://doi.org/10.1016/j.dsr2.2017.02.010

    Article  CAS  Google Scholar 

  • Mendes CR, Kerr R, Tavano VM, Cavalheiro FA, Garcia CA, Dessai DR, Anilkumar N (2015) Cross-front phytoplankton pigments and chemotaxonomic groups in the Indian sector of the Southern Ocean. Deep Res Part II 118:221–232. https://doi.org/10.1016/j.dsr2.2015.01.003

    Article  CAS  Google Scholar 

  • Mengesha S, Dehairs F, Fiala M, Elskens M, Goeyens L (1998) Seasonal variation of phytoplankton community structure and nitrogen uptake regime in the Indian Sector of the Southern Ocean. Polar Biol 20(4):259–272. https://doi.org/10.1007/s00300005302

    Article  Google Scholar 

  • Mitchell BG (1990) Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. In: Spinrad RW (ed) Ocean optics X Sep 1. International Society for Optics and Photonics, Bellingham

    Google Scholar 

  • Mitchell BG, Kahru M, Wieland J, Stramska M, Mueller JL (2002) Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean Opt Protoc Satellite Ocean Color Sensor Valid 3(2):231

    CAS  Google Scholar 

  • Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10(12):1973–1980. https://doi.org/10.1111/j.1365-2486.2004.00825.x

    Article  Google Scholar 

  • Moore CM, Suggett D, Holligan PM, Sharples J, Abraham ER, Lucas MI, Rippeth TP, Fisher NR, Simpson JH, Hydes DJ (2003) Physical controls on phytoplankton physiology and production at a shelf sea front: a fast repetition-rate fluorometer based field study. Mar Ecol Prog Ser 259:29–45. https://doi.org/10.3354/meps259029

    Article  CAS  Google Scholar 

  • Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J Geophys Res 104(C2):3059–3073

    Article  Google Scholar 

  • Morel A, Berthon JF (1989) Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications. Limnol Oceanogr 34(8):1545–1562

    Article  CAS  Google Scholar 

  • Naik P, D'Sa E, Goesdo Rosario Gomes JIH (2010) Assessment of particulate absorption properties in the southeastern Bering Sea from in-situ and remote sensing data. J Appl Remote Sens 4(1):043561. https://doi.org/10.1117/1.3525572

    Article  Google Scholar 

  • Naik P, D’Sa EJ, Gomes HD, Goés JI, Mouw CB (2013) Light absorption properties of southeastern Bering Sea waters: analysis, parameterization and implications for remote sensing. Rem Sens Environ 134:120–134. https://doi.org/10.1016/j.rse.2013.03.004

    Article  Google Scholar 

  • Olbers D, Borowski DA, Völker C (2004) The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct Sci 16(4):439–470. https://doi.org/10.1017/S0954102004002251

    Article  Google Scholar 

  • Olson RJ, Sosik HM, Chekalyuk AM, Shalapyonok A (2000) Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active fluorescence and flow cytometric analyses. Deep Res Part II 47(15–16):3181–3200. https://doi.org/10.1016/S0967-0645(00)00064-3

    Article  CAS  Google Scholar 

  • Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res Part I 42(5):641–673

    Article  Google Scholar 

  • Oxborough K, Moore CM, Suggett DJ, Lawson T, Chan HG, Geider RJ (2012) Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol Oceanogr 10(3):142–154. https://doi.org/10.4319/lom.2012.10.142

    Article  CAS  Google Scholar 

  • Palmisano AC, SooHoo JB, SooHoo SL, Kottmeier ST, Craft LL, Sullivan CW (1986) Photoadaptation in Phaeocystispouchetii advected beneath annual sea ice in McMurdo Sound, Antartica. J Plankton Res 8(5):891–906

    Article  Google Scholar 

  • Parslow JS, Boyd PW, Rintoul SR, Griffiths FB (2001) A persistent subsurface chlorophyll maximum in the Interpolar Frontal Zone south of Australia: seasonal progression and implications for phytoplankton- light-nutrient interactions. J Geophys Res 106:31543–31557. https://doi.org/10.1029/2000JC000322

    Article  Google Scholar 

  • Pavithran S, Anilkumar N, Krishnan KP, Noronha SB, George JV, Nanajkar M, Chacko R, Dessai DR, Achuthankutty CT (2012) Contrasting pattern in chlorophyll a distribution within the Polar Front of the Indian sector of Southern Ocean during austral summer 2010. Curr Sci 102(6):899

    Google Scholar 

  • Platt T, Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241(4873):1613–1620

    Article  CAS  Google Scholar 

  • Pond S, Pickard GL (1978) Introductory dynamical oceanography. Pergamon Press, New York

    Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36(33):8710–8723

    Article  CAS  Google Scholar 

  • Prakash S, Ramesh R, Sheshshayee MS, Mohan R, Sudhakar M (2015) Nitrogen uptake rates and f-ratios in the Equatorial and Southern Indian Ocean. Curr Sci 108:239–245

    CAS  Google Scholar 

  • Raateoja M, Mitchell BG, Wang H, Olivo E (2009) Effect of water column light gradient on phytoplankton fluorescence transients. Mar Ecol Prog Ser 376:85–101. https://doi.org/10.3354/meps07759

    Article  Google Scholar 

  • Redfield AC (1963) The influence of organisms on the composition of seawater. The sea 2:26–77

    Google Scholar 

  • Rintoul SR, Sokolov S, Williams MJ, Peña Molino B, Rosenberg M, Bindoff NL (2014) Antarctic circumpolar current transport and barotropic transition at Macquarie Ridge. Geophys Res Lett 41(20):7254–7261. https://doi.org/10.1002/2014GL061880

    Article  Google Scholar 

  • Rintoul SR, Trull TW (2001) Seasonal evolution of the mixed layer in the Subantarctic Zone south of Australia. J Geophys Res 106(C12):31447–31462. https://doi.org/10.1002/2014GL061880

    Article  Google Scholar 

  • Robinson CM, Cherukuru N, Hardman-Mountford NJ, Everett JD, McLaughlin MJ, Davies KP, Van Dongen-Vogels V, Ralph PJ, Doblin MA (2017) Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters. Estuar Coast Shelf Sci 192:1–6. https://doi.org/10.1016/j.ecss.2017.04.012

    Article  CAS  Google Scholar 

  • Sabu P, Anilkumar N, George JV, Chacko R, Tripathy SC, Achuthankutty CT (2014) The influence of air-sea-ice interactions on an anomalous phytoplankton bloom in the Indian Ocean sector of the Antarctic zone of the Southern Ocean during the austral summer. Polar Sci 8:370–384. https://doi.org/10.1016/j.polar.2014.08.001

    Article  Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res. https://doi.org/10.1093/plankt/19.11.1637

    Article  Google Scholar 

  • Sarmiento JL, Hughes TM, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393(6682):245

    Article  CAS  Google Scholar 

  • Sathyendranath S, Platt T (2007) Spectral effects in bio-optical control on the ocean system. Oceanologia 49:5–39

    Google Scholar 

  • Smith WO Jr, Dennett MR, Mathot S, Caron DA (2003) The temporal dynamics of the flagellated and colonial stages of Phaeocystis antarctica in the Ross Sea. Deep Res Part II 50(3–4):605–617. https://doi.org/10.1016/S0967-0645(02)00586-6

    Article  CAS  Google Scholar 

  • Sokolov S, Rintoul SR (2002) Structure of Southern Ocean fronts at 140 E. J Mar Syst 37(1–3):151–184. https://doi.org/10.1016/S0924-7963(02)00200-2

    Article  Google Scholar 

  • Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7(2):137–150

    Article  Google Scholar 

  • Stramski D, Morel A (1990) Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance. Deep Sea Res Part I37(2):245–266. https://doi.org/10.1016/0198-0149(90)90126-G

    Article  Google Scholar 

  • Strickland JD, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  • Thomalla SJ, Waldron HN, Lucas MI, Read JF, Ansorge IJ, Pakhomov E (2011) Phytoplankton distribution and nitrogen dynamics in the southwest Indian subtropical gyre and Southern Ocean waters. Ocean Sci 7(1):113–127. https://doi.org/10.5194/os-7-113-2011

    Article  CAS  Google Scholar 

  • Tripathy SC, Ishizaka J, Siswanto E, Shibata T, Mino Y (2012) Modification of the vertically generalized production model for the turbid waters of Ariake Bay, southwestern Japan. Estuar Coast Shelf Sci 97:66–77. https://doi.org/10.1016/j.ecss.2011.11.025

    Article  CAS  Google Scholar 

  • Tripathy SC, Ishizaka J, Fujiki T, Shibata T, Okamura K, Hosaka T, Saino T (2010) Assessment of carbon- and fluorescence-based primary productivity in Ariake Bay, southwestern Japan. Estuar Coast Shelf Sci 87:163–173. https://doi.org/10.1016/j.ecss.2010.01.006

    Article  CAS  Google Scholar 

  • Tripathy SC, Pavithran S, Sabu P, Naik RK, Noronha SB, Bhaskar PV, Kumar NA (2014) Is primary productivity in the Indian Ocean sector of Southern Ocean affected by pigment packaging effect? Curr Sci 107(6):00113891

    Google Scholar 

  • Tripathy SC, Pavithran S, Sabu P, Pillai HU, Dessai DR, Anilkumar N (2015) Deep chlorophyll maximum and primary productivity in Indian Ocean sector of the Southern Ocean: case study in the Subtropical and Polar Front during austral summer 2011. Deep Res Part II 118:240–249. https://doi.org/10.1016/j.dsr2.2015.01.004

    Article  CAS  Google Scholar 

  • Tripathy SC, Patra S, Vardhan KV, Sarkar A, Mishra RK, Anilkumar N (2018) Nitrogen uptake by phytoplankton in surface waters of the Indian sector of Southern Ocean during austral summer. Front Earth Sci 12(1):52–62. https://doi.org/10.1007/s11707-017-0649-9

    Article  CAS  Google Scholar 

  • Tripathy SC, Jena B (2019) Iron-stimulated phytoplankton blooms in the Southern Ocean: a brief review. Rem Sen Earth Syst Sci 2(1):64–77. https://doi.org/10.1007/s41976-019-00012-y

    Article  Google Scholar 

  • Trull TW, Bray SG, Manganini SJ, Honjo S, Francois R (2001) Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south of Australia. J Geophys Res: Oceans 106(C12):31489–31509. https://doi.org/10.1029/2000JC000308

    Article  CAS  Google Scholar 

  • UNESCO (1994) Protocols for the joint global ocean flux study (JGOFS) core measurements. IOC Manual and Guides, 29.

  • Wang D, Liang S, Liu R, Zheng T (2010) Estimation of daily-integrated PAR from sparse satellite observations: Comparison of temporal scaling methods. Int J Remote Sens 31(6):1661–1677. https://doi.org/10.1080/01431160903475407

    Article  Google Scholar 

  • Wang SQ, Ishizaka J, Yamaguchi H, Tripathy SC, Hayashi M, Xu YJ, Mino Y, Matsuno T, Watanabe Y, Yoo SJ (2014) Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea. Biogeosciences 11(7):1759–1773. https://doi.org/10.5194/bg-11-1759-2014

    Article  Google Scholar 

  • Wang J, Cota GF, Ruble DA (2005) Absorption and backscattering in the Beaufort and Chukchi Seas. J Geophys Res. https://doi.org/10.1029/2002JC001653

    Article  Google Scholar 

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra. Oecologia 17(4):281–291

    Article  Google Scholar 

  • Westwood KJ, Griffiths FB, Webb JP, Wright SW (2011) Primary production in the Sub-Antarctic and Polar Frontal zones south of Tasmania, Australia; SAZ-Sense survey, 2007. Deep Res Part II 58(21–22):2162–2178. https://doi.org/10.1016/j.dsr2.2011.05.017

    Article  CAS  Google Scholar 

  • Westwood KJ, Griffiths FB, Meiners KM (2006) Williams GD (2010) Primary productivity off the Antarctic coast from 30–80 E; BROKE-West survey. Deep Res Part II 57(9–10):794–814. https://doi.org/10.1016/j.dsr2.2008.08.020

    Article  CAS  Google Scholar 

  • Wu J, Hong H, Shang S, Dai M, Lee Z (2007) Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn. Biogeosciences 4(3):1555–1584. https://doi.org/10.5194/bgd-4-1555-2007

    Article  Google Scholar 

  • Xu K, Lavaud J, Perkins R, Austen E, Bonnanfant M, Campbell DA (2018) Phytoplankton σPSII and excitation dissipation; implications for estimates of primary productivity. Front Mar Sci 5:281. https://doi.org/10.3389/fmars.2018.00281

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ministry of Earth Sciences, Government of India for financial support. Our thanks are also due to the Director, National Centre for Polar and Ocean Research (NCPOR) for constant encouragement. We thank the captain, officers and all the crew members of ORV-Sagar Nidhi for their invaluable help during the expedition. We are grateful to Dr. David Hughes for his valuable suggestions about interpretation of the FRRf data, Dr. Jill Schwarz and the anonymous reviewer for their insightful suggestions that led to an overall improvement of the manuscript. Ms. Anvita Ulhas Kerkar is grateful to the Department of Science and Technology, Government of India for DST-INSPIRE doctoral research fellowship and Goa University, Goa for research administrative facilities. This is NCPOR Contribution Number J-43/2020-21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Tripathy.

Ethics declarations

Conflict of interest

We declare that the authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerkar, A.U., Tripathy, S.C., Minu, P. et al. Variability in primary productivity and bio-optical properties in the Indian sector of the Southern Ocean during an austral summer. Polar Biol 43, 1469–1492 (2020). https://doi.org/10.1007/s00300-020-02722-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02722-2

Keywords

Navigation