Skip to main content
Log in

Surface-Plasmon-Induced Ag Nanoparticles Decorated In2O3 Nanowires for Low Noise Photodetectors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver (Ag) nanoparticles (NPs) were synthesized by glancing angle deposition (GLAD) technique on indium oxide (In2O3) nanowires (NWs) over n-type Si substrate. The In2O3 NWs and Ag NPs were morphologically characterized by field emission scanning electron microscopy (FESEM) and electron dispersive spectroscopy (EDS). The complete growth of In2O3 NWs was observed by high-resolution transmission electron microscopy (HRTEM) and corresponding selected area electron diffraction (SAED) pattern was also studied. The structural analysis was done by high-resolution X-ray diffraction (HRXRD), and relevant peaks were identified to calculate the crystalline size. The HRXRD patterns displayed the peak for Ag NPs and monoclinic crystal structure of Ag3O4. The optical properties were analyzed by photoluminescence (PL) emission spectrums. The presence of Ag NPs over In2O3 NWs reduced the PL intensity. Atomic force microscopy (AFM) was also studied to estimate the surface roughness for both the samples. The semi-logarithmic I-V (ln(I)-V) characteristics revealed the enhancement in photoconduction for the n-Si/In2O3 NWs/Ag NPs device at − 4.5 V using a 100-W tungsten filament source. The total ~ 2.6 fold enhancement in photosensitivity were recorded for the n-Si/In2O3 NWs/Ag NPs device at an applied voltage of − 2.4 V. This n-Si/In2O3 NWs/Ag NPs device possessed high detectivity and low noise equivalent power (NEP) as compared with the bare n-Si/In2O3 NWs device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Woo JK, Cho S (2014) Electrical and optical properties of Eu-doped indium oxide thin films deposited by radio-frequency magnetron sputtering. J Nanosci Nanotechnol 14(12):8982–8986. https://doi.org/10.1166/jnn.2014.10081

    Article  CAS  PubMed  Google Scholar 

  2. Jothibas M, Manoharan C, Jeyakumar SJ, Praveen P (2015) Study on structural and optical behaviors of In2O3 nanocrystals as potential candidate for optoelectronic devices. J Mater Sci Mater Electron 26(12):9600–9606. https://doi.org/10.1007/s10854-015-3623-x

    Article  CAS  Google Scholar 

  3. Sarkar MB, Choudhuri B, Bhattacharya P, Barman RN, Ghosh A, Dwivedi SMMD, Chakrabartty S, Mondal A (2018) Improved UV photodetection by indium doped TiO2 thin film based photodetector. J Nanosci Nanotechnol 18(7):4898–4903. https://doi.org/10.1166/jnn.2018.15295

    Article  CAS  PubMed  Google Scholar 

  4. Sarkar MB, Mondal A, Choudhuri B (2016) Presence of capacitive memory in indium doped TiO2 alloy thin film. J Alloys Compd 654:529–533. https://doi.org/10.1016/j.jallcom.2015.09.129

    Article  CAS  Google Scholar 

  5. Hu Y, Chen HJ (2007) Preparation and characterization of nanocrystalline ZnO particles from a hydrothermal process. J Nanopart Res 10(3):401–407. https://doi.org/10.1007/s11051-007-9264-0

    Article  CAS  Google Scholar 

  6. Seetha M, Bharathi S, Raj AD, Mangalaraj D, Nataraj D (2009) Optical investigations on indium oxide nano-particles prepared through precipitation method. Mater Charact 60(12):1578–1582. https://doi.org/10.1016/j.matchar.2009.09.009

    Article  CAS  Google Scholar 

  7. Charalampous A, Zervos M, Kioseoglou J, Tsagaraki K, Androulidaki M, Konstantinidis G, Tanasă E, Vasile E (2019) Epitaxially oriented Sn:In2O3 nanowires grown by the vapor-liquid-solid mechanism on m-, r-, a-Al2O3 as scaffolds for nanostructured solar cells. ACS Appl Energy Mater 2(6):4274–4283. https://doi.org/10.1021/acsaem.9b00519

    Article  CAS  Google Scholar 

  8. Lee SK, Chang D, Yang SD, Kim SW (2015) Synthesis of Diacid-assisted indium oxide nanoparticles and its CO gas sensing activity. J Nanosci Nanotechnol 15(12):9905–9910. https://doi.org/10.1166/jnn.2015.10867

    Article  CAS  PubMed  Google Scholar 

  9. Shao D, Qin L, Sawyer S (2012) Near ultraviolet photodetector fabricated from polyvinyl-alcohol coated In2O3 nanoparticles. Appl Surf Sci 261:123–127. https://doi.org/10.1016/j.apsusc.2012.07.111

    Article  CAS  Google Scholar 

  10. Hong JS, Kim SM, Park SJ, Choi HW, Kim KH (2010) Preparation of In2O3-ZnO (IZO) thin film on glass substrate for organic light emitting device (OLED). Mol Cryst Liq Cryst 520(1):19/[295]–27/[303]. https://doi.org/10.1080/15421401003608287

    Article  CAS  Google Scholar 

  11. Hashimoto R, Abe Y, Nakada T (2008) High mobility titanium-doped In2O3 thin films prepared by sputtering/post-annealing technique. Appl Phys Express 1(1):015002. https://doi.org/10.1143/APEX.1.015002

    Article  CAS  Google Scholar 

  12. Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4(10):1919–1924. https://doi.org/10.1021/nl0489283

    Article  CAS  Google Scholar 

  13. Han SD, Noh MS, Kim S, Shim YS, Song YG, Lee K, Lee HR, Nahm S, Yoon SJ, Kim JS, Kang CY (2017) Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor. Sens Actuators B Chem 248:894–901. https://doi.org/10.1016/j.snb.2017.01.108

    Article  CAS  Google Scholar 

  14. Peng XS, Wang YW, Zhang J, Wang XF, Zhao LX, Meng GW, Zhang LD (2002) Large-scale synthesis of In2O3 nanowires. Appl Phys A Mater Sci Process 74(3):437–439. https://doi.org/10.1007/s003390101037

    Article  CAS  Google Scholar 

  15. Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics. 3(4):127–150. https://doi.org/10.1007/s11468-008-9066-y

    Article  CAS  Google Scholar 

  16. Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J, Halas NJ (2014) Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl Phys Lett 104(3):031112. https://doi.org/10.1063/1.4862745

    Article  CAS  Google Scholar 

  17. Xiao XH, Ren F, Zhou XD, Peng TC, Wu W, Peng XN, Yu XF, Jiang CZ (2010) Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO. Appl Phys Lett 97(7):071909. https://doi.org/10.1063/1.3480417

    Article  CAS  Google Scholar 

  18. Arshad MS, Trafela Š, Rožman KŽ, Kovač J, Djinović P, Pintar A (2017) Determination of Schottky barrier height and enhanced photoelectron generation in novel plasmonic immobilized multisegmented (Au/TiO2) nanorod arrays (NRAs) suitable for solar energy conversion applications. J Mater Chem C 5(40):10509–10516. https://doi.org/10.1039/c7tc02633a

    Article  CAS  Google Scholar 

  19. Pooja P, Chinnamuthu P (2020) Surface state controlled superior photodetection properties of Isotype n-TiO2/In2O3 heterostructure nanowire array with high specific detectivity. IEEE Trans Nanotechnol 19:34–41. https://doi.org/10.1109/tnano.2019.2956960

    Article  CAS  Google Scholar 

  20. Ghosh A, Dwivedi SMMD, Ghadi H, Chinnamuthu P, Chakrabarti S, Mondal A (2017) Boosted UV sensitivity of Er-doped In2O3 thin films using plasmonic Ag nanoparticle-based surface texturing. Plasmonics. 13(3):1105–1113. https://doi.org/10.1007/s11468-017-0679-x

    Article  CAS  Google Scholar 

  21. Marimuthu A, Zhang J, Linic S (2013) Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of cu oxidation state. Science 339(6127):1590–1593. https://doi.org/10.1126/science.1231631

    Article  CAS  PubMed  Google Scholar 

  22. Gogurla N, Sinha AK, Santra S, Manna S, Ray SK (2014) Multifunctional au-ZnO Plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci Rep 4(1):6483. https://doi.org/10.1038/srep06483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li D, Sun X, Song H, Li Z, Chen Y, Jiang H, Miao G (2012) Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv Mater 24(6):845–849. https://doi.org/10.1002/adma.201102585

    Article  CAS  PubMed  Google Scholar 

  24. Fu J, Zhao Y (2010) Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth. Nanotechnology 21(17):175303. https://doi.org/10.1088/0957-4484/21/17/175303

    Article  CAS  PubMed  Google Scholar 

  25. Mehta BR, Singh VN (2005) Structural, electrical and gas-sensing properties of In2O3:Ag composite nanoparticle layers. Pramana J Phys 65(5):949–958. https://doi.org/10.1007/BF02704096

    Article  CAS  Google Scholar 

  26. Zhou CM, Gall D (2007) Growth competition during glancing angle deposition of nanorod honeycomb arrays. Appl Phys Lett 90(9):093103. https://doi.org/10.1063/1.2709929

    Article  CAS  Google Scholar 

  27. Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: growth mechanics and applications. J Vac Sci Technol A 15(3):1460–1465. https://doi.org/10.1116/1.580562

    Article  CAS  Google Scholar 

  28. Lahiri R, Mondal A (2018) Superior memory of Er doped TiO2 nanowire MOS capacitor. IEEE Electron Device Lett 39:1856–1859. https://doi.org/10.1109/LED.2018.2874272

    Article  CAS  Google Scholar 

  29. Zhou Q, Li Z, Ni J, Zhang Z (2011) A simple model to describe the rule of glancing angle deposition. Mater Trans 52(3):469–473. https://doi.org/10.2320/matertrans.M2010342

    Article  CAS  Google Scholar 

  30. Wang G, Liu Y, Gao C, Guo L, Chi M, Ijiro K, Maeda M, Yin Y (2017) Island growth in the seed-mediated overgrowth of monometallic colloidal nanostructures. Chem. 3(4):678–690. https://doi.org/10.1016/j.chempr.2017.08.004

    Article  CAS  Google Scholar 

  31. Ann Mary KA, Unnikrishnan NV, Philip R (2015) Cubic to amorphous transformation of Se in silica with improved ultrafast optical nonlinearity. RSC Adv 5(18):14034–14041. https://doi.org/10.1039/C4RA14025G

    Article  CAS  Google Scholar 

  32. Anand K, Kaur J, Singh RC, Thangaraj R (2016) Structural, optical and gas sensing properties of pure and Mn-doped In2O3 nanoparticles. Ceram Int 42(9):10957–10966. https://doi.org/10.1016/j.ceramint.2016.03.233

    Article  CAS  Google Scholar 

  33. Koohpeima F, Mokhtari MJ, Khalafi S (2017) The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols. J Appl Oral Sci 25(4):367–373. https://doi.org/10.1590/1678-7757-2016-0391

    Article  CAS  Google Scholar 

  34. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, Zargar M (2012) Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomedicine 7:5603–5610. https://doi.org/10.2147/IJN.S36786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laskri A, Drici A, Boulouma A, Amara A, Bernede JC (2019) Investigation of microstructural and optical properties of Ag3O4 thin films sprayed onto glass substrate. JNanoR. 58:90–101. https://doi.org/10.4028/www.scientific.net/JNanoR.58.90

    Article  CAS  Google Scholar 

  36. Xie W, Li Y, Sun W, Huang J, Xie H, Zhao X (2010) Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J Photochem Photobiol A Chem 216(2–3):149–155. https://doi.org/10.1016/j.jphotochem.2010.06.032

    Article  CAS  Google Scholar 

  37. Nath A, Raman R, Yadav VK, Sannibabu P, Sarkar MB (2020) Bandgap modulation of glancing angle deposition aided Ag nanoparticles covered TiO2 thin film by high temperature annealing. J Nanosci Nanotechnol 20(12):7636–7643. https://doi.org/10.1166/jnn.2020.18575

    Article  CAS  PubMed  Google Scholar 

  38. Chiou ST, Tsai HL, Lee WS (2007) Effects of strain rate and temperature on the deformation and fracture behaviour of titanium alloy. Mater Trans 48(9):2525–2533. https://doi.org/10.2320/matertrans.MRA2007607

    Article  CAS  Google Scholar 

  39. Kim WJ, Pradhan D, Sohn Y (2013) Fundamental nature and CO oxidation activities of indium oxide nanostructures: 1D-wires, 2D-plates, and 3D-cubes and donuts. J Mater Chem A 1(35):10193–10202. https://doi.org/10.1039/c3ta12312j

    Article  CAS  Google Scholar 

  40. Zheng MJ, Zhang LD, Li GH, Zhang XY, Wang XF (2001) Ordered indium-oxide nanowire arrays and their photoluminescence properties. Appl Phys Lett 79(6):839–841. https://doi.org/10.1063/1.1389071

    Article  CAS  Google Scholar 

  41. Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML, McGehee MD, Cui Y (2012) Hybrid silicon Nanocone-polymer solar cells. Nano Lett 12(6):2971–2976. https://doi.org/10.1021/nl300713x

    Article  CAS  PubMed  Google Scholar 

  42. Fong KE, Yung LYL (2013) Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale. 5(24):12043–12071. https://doi.org/10.1039/c3nr02257a

    Article  CAS  PubMed  Google Scholar 

  43. Yang D, Jang J, Lim J, Lee JK, Kim SH, Hong JI (2016) Correlations of optical absorption, charge trapping, and surface roughness of TiO2 photoanode layer loaded with neat Ag-NPs for efficient perovskite solar cells. ACS Appl Mater Inter 8(33):21522–21530. https://doi.org/10.1021/acsami.6b07079

    Article  CAS  Google Scholar 

  44. Puigdollers AR, Schlexer P, Pacchioni G (2015) Gold and silver clusters on TiO2 and ZrO2 (101) surfaces: role of dispersion forces. The J Phys Chem C 119(27):15381–15389. https://doi.org/10.1021/acs.jpcc.5b04026

    Article  CAS  Google Scholar 

  45. Lee CJ, Won CH, Lee JH, Hahm SH, Park H (2019) GaN-based ultraviolet passive pixel sensor on silicon (111) substrate. Sensors. 19(5):1051. https://doi.org/10.3390/s19051051

    Article  CAS  Google Scholar 

  46. Shamir N, Mihaychuk JG, van Driel HM (2000) Trapping and detrapping of electrons photoinjected from silicon to ultrathin SiO2 overlayers. I In vacuum and in the presence of ambient oxygen. J Appl Phys 88(2):896–908. https://doi.org/10.1063/1.373753

    Article  CAS  Google Scholar 

  47. Sarkar MB, Mondal A, Choudhuri B, Mahajan BK, Chakrabartty S, Ngangbam C (2014) Enlarged broad band photodetection using indium doped TiO2 alloy thin film. J Alloys Compd 615:440–445. https://doi.org/10.1016/j.jallcom.2014.06.184

    Article  CAS  Google Scholar 

  48. Devi VL, Jyothi I, Reddy VR, Choi CJ (2012) Schottky barrier parameters and interfacial reactions of rapidly annealed au/cu bilayer metal scheme on N-type InP. Open Appl Physics J 5(1):1–9. https://doi.org/10.2174/1874183501205010001

    Article  CAS  Google Scholar 

  49. Mohanraj K, Balasubramanian D, Chandrasekaran J, Bose AC (2018) Synthesis and characterizations of Ag-doped CdO nanoparticles for P-N junction diode application. Mater Sci Semicond Process 79:74–91. https://doi.org/10.1016/j.mssp.2018.02.006

    Article  CAS  Google Scholar 

  50. Zheng H, Mahajan BK, Su SC, Mukherjee S, Gangopadhyay K, Gangopadhyay S (2016) Barrier modification of metal-contact on silicon by Sub-2 nm platinum nanoparticles and thin dielectrics. Sci Rep 6(1):25234. https://doi.org/10.1038/srep25234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuan Z (2014) A photodiode with high rectification ratio and low turn-on voltage based on ZnO nanoparticles and SubPc planar heterojunction. Phys E 56:160–164. https://doi.org/10.1016/j.physe.2013.09.001

    Article  CAS  Google Scholar 

  52. Nath S, Kar JP, Myoung JM (2011) Junction properties and applications of ZnO single nanowire based Schottky diode, Nanowires-Fundamental Research. InTech, Rijeka, pp 161–182

    Google Scholar 

  53. Wang H, Lim JW, Mota FM, Jang YJ, Yoon M, Kim H, Hu W, Nohc YY, Kim DH (2017) Plasmon-mediated wavelength-selective enhanced photoresponse in polymer photodetectors. J Mater Chem C 5(2):399–407. https://doi.org/10.1039/C6TC04662B

    Article  CAS  Google Scholar 

  54. Liu HY, Hsu WC, Chou BY, Wang YH (2015) Fabrication AlGaN/GaN MIS UV Photodetector by H2O2 oxidation. IEEE Photon Technol Lett 27(1):101–104. https://doi.org/10.1109/lpt.2014.2362911

    Article  CAS  Google Scholar 

  55. Chen TP, Young SJ, Chang SJ, Huang BR, Wang SM, Hsiao CH, Wu SL, Yang CB (2012) Low-frequency noise characteristics of GaN Schottky barrier photodetectors prepared with nickel annealing. IEEE Sensors J 12(9):2824–2829. https://doi.org/10.1109/jsen.2012.2200886

    Article  CAS  Google Scholar 

  56. Lee KH, Chang PC, Chang SJ, Wang YC, Yu CL, Wu SL (2009) Characterization of AlGaN/GaN metal- semiconductor-metal photodetectors with a low-temperature AlGaN interlayer. IEEE Sensors J 9(6):723–727. https://doi.org/10.1109/jsen.2009.2021190

    Article  CAS  Google Scholar 

  57. Chiou YZ, Su YK, Chang SJ, Gong J, Chang CS, Liu SH (2003) The properties of photo chemical-vapor deposition SiO2 and its application in GaN metal-insulator semiconductor ultraviolet photodetectors. J Electron Mater 32(5):395–399. https://doi.org/10.1007/s11664-003-0164-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are acknowledged to SAIF, NEHU Shillong for HRTEM analysis. The authors are thankful to Centre of Excellence (COE) in Advanced Materials, NIT Durgapur and Central Instrumentation Centre (CIC), Tripura University, INDIA for providing the cross-section and top FESEM facility respectively. The authors are also thankful to Dr. S. P. Mondal and Dr. B. Saha, Assistant Professors, Department of Physics, NIT Agartala, INDIA for providing the AFM and HRXRD facility, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra Barun Sarkar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, A., Sarkar, M.B. Surface-Plasmon-Induced Ag Nanoparticles Decorated In2O3 Nanowires for Low Noise Photodetectors. Plasmonics 16, 37–48 (2021). https://doi.org/10.1007/s11468-020-01262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01262-z

Keywords

Navigation