Skip to main content

Advertisement

Log in

Mitochondrial dynamics and quality control are altered in a hepatic cell culture model of cancer cachexia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatic mitochondrial function loss is associated with cancer cachexia pathology in vivo. Here, we examined if hepatic mitochondrial defects observed in vivo in the cachexic liver also recapitulate during the in vitro treatment of mouse hepatocytes with tumor conditioned media. In vitro experiments were combined with proteome-wide expression analysis of cachexic liver tissue curated for mitochondrial dynamics and quality control proteins, to determine the fidelity of hepatic mitochondrial maladaptation in cancer cachexia pathology. AML12 hepatocytes were exposed to colon-26 (C26) and Lewis lung carcinoma (LLC) conditioned media for 6–72 h and assayed for cell viability, membrane potential, respiratory function, H2O2 production, total ROS/RNS, and mitochondrial dynamics and quality control proteins by immunoblotting. Liver tissue from cachexic C26 mice was analyzed by TMT-based quantitative proteomics for in vivo comparison. Cell viability, membrane potential, H2O2 production, total ROS/RNS, and respiration were decreased 48–72 h after exposure to C26 and/or LLC. Protein expression of treated hepatocytes and cachexic liver tissue showed altered mitochondrial dynamics and quality control, in a manner that suggests limited fusion and content mixing, but also impaired ability to fragment and clear damaged mitochondria. Two strategies to maintain mitochondrial health, therefore, may not be functioning sufficiently in the cachexic liver. Together these findings imply adverse effects of C26 and LLC exposure on hepatocyte health, due to impaired mitochondrial function and remodeling. Exposure of mouse hepatocytes to tumor conditioned media models aspects of cachexic liver mitochondria dysfunction in vivo and validates the importance of hepatic mitochondrial maladaptation in cancer cachexia pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, Macdonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. https://doi.org/10.1016/S1470-2045(10)70218-7

    Article  PubMed  Google Scholar 

  2. von Haehling S, Anker SD (2010) Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle 1(1):1–5. https://doi.org/10.1007/s13539-010-0002-6

    Article  Google Scholar 

  3. Arthur ST, Van Doren BA, Roy D, Noone JM, Zacherle E, Blanchette CM (2016) Cachexia among US cancer patients. J Med Econ 19(9):874–880. https://doi.org/10.1080/13696998.2016.1181640

    Article  PubMed  Google Scholar 

  4. Arthur ST, Noone JM, Van Doren BA, Roy D, Blanchette CM (2014) One-year prevalence, comorbidities and cost of cachexia-related inpatient admissions in the USA. Drugs Context 3:212265. https://doi.org/10.7573/dic.212265

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khamoui AV, Kim JS (2011) Candidate mechanisms underlying effects of contractile activity on muscle morphology and energetics in cancer cachexia. Eur J Cancer Care. https://doi.org/10.1111/j.1365-2354.2011.01287.x

    Article  Google Scholar 

  6. Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513(7516):100–104. https://doi.org/10.1038/nature13528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonetto A, Rupert JE, Barreto R, Zimmers TA (2016) The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. J Vis Exp. https://doi.org/10.3791/54893

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner EF (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20(3):433–447. https://doi.org/10.1016/j.cmet.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  9. Khamoui AV, Park BS, Kim DH, Yeh MC, Oh SL, Elam ML, Jo E, Arjmandi BH, Salazar G, Grant SC, Contreras RJ, Lee WJ, Kim JS (2016) Aerobic and resistance training dependent skeletal muscle plasticity in the colon-26 murine model of cancer cachexia. Metabolism 65(5):685–698. https://doi.org/10.1016/j.metabol.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  10. McLean JB, Moylan JS, Andrade FH (2014) Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. Front Physiol 5:503. https://doi.org/10.3389/fphys.2014.00503

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seto DN, Kandarian SC, Jackman RW (2015) A key role for leukemia inhibitory factor in C26 cancer cachexia. J Biol Chem 290(32):19976–19986. https://doi.org/10.1074/jbc.M115.638411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Silva KA, Dong J, Dong Y, Schor N, Tweardy DJ, Zhang L, Mitch WE (2015) Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem 290(17):11177–11187. https://doi.org/10.1074/jbc.M115.641514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halle JL, Pena GS, Paez HG, Castro AJ, Rossiter HB, Visavadiya NP, Whitehurst MA, Khamoui AV (2019) Tissue-specific dysregulation of mitochondrial respiratory capacity and coupling control in colon-26 tumor-induced cachexia. Am J Physiol Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.00028.2019

    Article  PubMed  Google Scholar 

  14. Khamoui AV, Tokmina-Roszyk D, Rossiter HB, Fields GB, Visavadiya NP (2020) Hepatic proteome analysis reveals altered mitochondrial metabolism and suppressed acyl-CoA synthetase-1 in colon-26 tumor-induced cachexia. Physiol Genom 52(5):203–216. https://doi.org/10.1152/physiolgenomics.00124.2019

    Article  CAS  Google Scholar 

  15. Goncalves MD, Hwang SK, Pauli C, Murphy CJ, Cheng Z, Hopkins BD, Wu D, Loughran RM, Emerling BM, Zhang G, Fearon DT, Cantley LC (2018) Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proc Natl Acad Sci USA 115(4):E743–E752. https://doi.org/10.1073/pnas.1714703115

    Article  CAS  PubMed  Google Scholar 

  16. Brown JL, Rosa-Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA, Haynie WS, Hardee JP, Carson JA, Wiggs MP, Washington TA, Greene NP (2017) Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle 8(6):926–938. https://doi.org/10.1002/jcsm.12232

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, Zhao R, St-Germain J, Heese LE, Egan G, Ruvolo VR, Barghout SH, Nishida Y, Hurren R, Ma W, Gronda M, Link T, Wong K, Mabanglo M, Kojima K, Borthakur G, MacLean N, Ma MCJ, Leber AB, Minden MD, Houry W, Kantarjian H, Stogniew M, Raught B, Pai EF, Schimmer AD, Andreeff M (2019) Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell 35(5):721–737. https://doi.org/10.1016/j.ccell.2019.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marzetti E, Lorenzi M, Landi F, Picca A, Rosa F, Tanganelli F, Galli M, Doglietto GB, Pacelli F, Cesari M, Bernabei R, Calvani R, Bossola M (2017) Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia. Exp Gerontol 87(Pt A):92–99. https://doi.org/10.1016/j.exger.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  19. Sefried S, Haring HU, Weigert C, Eckstein SS (2018) Suitability of hepatocyte cell lines HepG2, AML12 and THLE-2 for investigation of insulin signalling and hepatokine gene expression. Open Biol. https://doi.org/10.1098/rsob.180147

    Article  PubMed  PubMed Central  Google Scholar 

  20. Visavadiya NP, Keasey MP, Razskazovskiy V, Banerjee K, Jia C, Lovins C, Wright GL, Hagg T (2016) Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 14(1):32. https://doi.org/10.1186/s12964-016-0157-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Visavadiya NP, McEwen ML, Pandya JD, Sullivan PG, Gwag BJ, Springer JE (2013) Antioxidant properties of Neu 2000 on mitochondrial free radicals and oxidative damage. Toxicol In Vitro 27(2):788–797. https://doi.org/10.1016/j.tiv.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  22. Kumar P, Nagarajan A, Uchil PD (2018) Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot095505

    Article  PubMed  Google Scholar 

  23. Djafarzadeh S, Jakob SM (2017) High-resolution respirometry to assess mitochondrial function in permeabilized and intact cells. J Vis Exp. https://doi.org/10.3791/54985

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sack MN (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res 72(2):210–219. https://doi.org/10.1016/j.cardiores.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  25. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13(4):378–385. https://doi.org/10.1038/embor.2012.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rana A, Oliveira MP, Khamoui AV, Aparicio R, Rera M, Rossiter HB, Walker DW (2017) Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun 8(1):448. https://doi.org/10.1038/s41467-017-00525-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Galloway CA, Lee H, Nejjar S, Jhun BS, Yu T, Hsu W, Yoon Y (2012) Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes 61(8):2093–2104. https://doi.org/10.2337/db11-1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petruzzelli M, Wagner EF (2016) Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev 30(5):489–501. https://doi.org/10.1101/gad.276733.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Porporato PE (2016) Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 5:e200. https://doi.org/10.1038/oncsis.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27(2):105–117. https://doi.org/10.1016/j.tem.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  31. Al-Furoukh N, Ianni A, Nolte H, Holper S, Kruger M, Wanrooij S (1853) Braun T (2015) ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. Biochim Biophys Acta 10:2580–2591. https://doi.org/10.1016/j.bbamcr.2015.06.016

    Article  CAS  Google Scholar 

  32. Zhuang N, Li L, Chen S, Wang T (2016) PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control. Cell Death Dis 7(12):e2501. https://doi.org/10.1038/cddis.2016.396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We extend our sincere thanks to Ms. Peggy Donnelly and Ms. Denise Merrill for administrative support. AVK was supported by the Transdisciplinary Research on Energetics and Cancer (TREC) Training Program R25CA203650 (PI: Melinda Irwin).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study were contributed by NV, AK. Data collection and analysis were contributed by NV, GP, AK. Preparation of figures was contributed by NV. Drafting and revising manuscript were contributed by NV, AK. NV, GP, AK approved final version of manuscript.

Corresponding author

Correspondence to Andy V. Khamoui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Animal experiments were approved by the Institutional Animal Care and Use Committee at Florida Atlantic University (Protocol #A16-39).

Consent for publication

The Author transfers to Springer (respective to owner if other than Springer and for US government employees: to the extent transferable) the non-exclusive publication rights and he warrants that his/her contribution is original and that he/she has full power to make this grant. The author accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visavadiya, N.P., Pena, G.S. & Khamoui, A.V. Mitochondrial dynamics and quality control are altered in a hepatic cell culture model of cancer cachexia. Mol Cell Biochem 476, 23–34 (2021). https://doi.org/10.1007/s11010-020-03882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03882-9

Keywords

Navigation