Skip to main content
Log in

Alpine deep-seated gravitational slope deformation and the Messinian Salinity Crisis

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The southern part of the French Alps is studied for years in mapping and understanding of large-scale gravitational deformations. The identification and the knowledge of large-scale slope deformation (deep-seated gravitational slope deformation or DSGSD and deep-seated landslide or DSL) in the previous work of Jomard (2006) and Zerathe (2013) open a new vision of landslide processes with the reinterpretation of their dynamics and the characterization of the time scales involved. We identify DSGSD (10.109 m3) in the Var Valley associated with geological and geomorphological anomalies linked to the Messinian Salinity Crisis (MSC) and the alpine orogenesis. We use field observations, geological information (geological map, boreholes), and topographic analysis performed in a GIS environment in order to describe these anomalies. This old and partly eroded slide mass is associated with three typical DSGSD features: (1) a double-crested ridge, the Sinne Valley, (2) a large formation (2.7 × 108 m3) of slope deposit dated from the Messinian (Carros breccia), and (3) the kilometric deviation (1 to 2 km) of the Var River. We relate all these anomalies to the MSC (5.97 to 5.46 Ma) and the incision of deep canyons during this period related to this major eustatic variation (≈ 1300 m). The incision of the canyon triggered the collapse process of the DSGSD of the Sinne Valley and so destabilized the entire massif. At present, three DSLs resulting from the DSGSD deformation are still present in the area in a dormant state. Indeed, since the infilling of the Var Canyon during the Pliocene, the activity of the DSGSD has stopped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102. https://doi.org/10.1016/S0013-7952(00)00066-1

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Zanchi A, Ravazzi C (2009) Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphol, Dating, Trigger, Model Hazard Assess Large Landslides 103:113–129. https://doi.org/10.1016/j.geomorph.2007.09.015

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Frattini P (2012) Slow rock-slope deformation. In: Clague J-J, Stead D (eds) Landslides: types, mechanisms and modeling, pp 209–221

    Google Scholar 

  • Ambrosi C, Crosta GB (2006) Large sackung along major tectonic features in the Central Italian Alps. Eng Geol Large Landslides: Dating, Trigger, Model Hazard Asses 83:183–200. https://doi.org/10.1016/j.enggeo.2005.06.031

    Article  Google Scholar 

  • Azañón JM, Azor A, Pérez-Peña JV, Carrillo JM (2005) Late Quaternary large-scale rotational slides induced by river incision: the Arroyo de Gor area (Guadix basin, SE Spain). Geomorphology 69:152–168

    Google Scholar 

  • Azañón JM, Azor A, Yesares J, Tsige M, Mateos RM, Nieto F, Delgado J, López-Chicano M, Martín W, Rodríguez-Fernández J (2010) Regional-scale high-plasticity clay-bearing formation as controlling factor on landslides in Southeast Spain. Geomorphology 120:26–37

    Google Scholar 

  • Bache F, Popescu S-M, Rabineau M, Gorini C, Suc J-P, Clauzon G, Olivet J-L, Rubino J-L, Melinte-Dobrinescu MC, Estrada F, Londeix L, Armijo R, Meyer B, Jolivet L, Jouannic G, Leroux E, Aslanian D, Reis ATD, Mocochain L, Dumurdžanov N, Zagorchev I, Lesić V, Tomić D, Namık Çağatay M, Brun J-P, Sokoutis D, Csato I, Ucarkus G, Çakır Z (2012) A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Res 24:125–153. https://doi.org/10.1111/j.1365-2117.2011.00521.x

    Article  Google Scholar 

  • Baggioni M (1971) Etude morphologique de la rive droite de la Basse Vallée du Var. Méditerranée 2:785–801. https://doi.org/10.3406/medit.1971.1406

    Article  Google Scholar 

  • Ballantyne CK (2002a) A general model of paraglacial landscape response. The Holocene 12:371–376. https://doi.org/10.1191/0959683602hl553fa

    Article  Google Scholar 

  • Ballantyne CK (2002b) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017. https://doi.org/10.1016/S0277-3791(02)00005-7

    Article  Google Scholar 

  • Baron I, Cílek V, Krejci O, Melichar R, Hubatka F (2004) Structure and dynamics of deep-seated slope failures in the Magura Flysch Nappe, outer Western Carpathians (Czech Republic). Nat Hazards Earth Syst Sci 4:549–562

    Google Scholar 

  • Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686. https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2

    Article  Google Scholar 

  • A c B (1968) Gravity faulting as a mechanism of topographic adjustment. N Z J Geol Geophys 11:191–199. https://doi.org/10.1080/00288306.1968.10423684

    Article  Google Scholar 

  • Bertoni C, Cartwright JA (2007) Major erosion at the end of the Messinian Salinity Crisis: evidence from the Levant Basin, Eastern Mediterranean. Basin Res 19:1–18. https://doi.org/10.1111/j.1365-2117.2006.00309.x

    Article  Google Scholar 

  • Blanc P-L (2002) The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. Geodin Acta 15:303–317. https://doi.org/10.1080/09853111.2002.10510763

    Article  Google Scholar 

  • Blöthe JH, Korup O, Schwanghart W (2015) Large landslides lie low: excess topography in the Himalaya-Karakoram ranges. Geology 43:523–526. https://doi.org/10.1130/G36527.1

    Article  Google Scholar 

  • Bovis MJ (1982) Uphill-facing (antislope) scarps in the Coast Mountains, southwest British Columbia. GSA Bull 93:804–812. https://doi.org/10.1130/0016-7606(1982)93<804:UASITC>2.0.CO;2

    Article  Google Scholar 

  • Bovis MJ, Evans SG (1996) Extensive deformations of rock slopes in southern Coast Mountains, southwest British Columbia, Canada. Eng Geol 44:163–182. https://doi.org/10.1016/S0013-7952(96)00068-3

    Article  Google Scholar 

  • Buccolini M, Gentili B, Materazzi M, Piacentini T (2010) Late Quaternary geomorphological evolution and erosion rates in the clayey peri-Adriatic belt (Central Italy). Geomorphology 116:145–161. https://doi.org/10.1016/j.geomorph.2009.10.015

    Article  Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  • Clauzon G (1975) Preuves et implications de la régression endoréique messinienne au niveau des plaines abyssales: l’exemple du Midi méditerranéen français. Bulletin de l’Association de Géographes Français 52:317–333

    Google Scholar 

  • Clauzon G (1978) The Messinian Var canyon (Provence, Southern France) — paleogeographic implications. Mar Geol Messinian Erosional Surf Mediterranean 27:231–246. https://doi.org/10.1016/0025-3227(78)90033-6

    Article  Google Scholar 

  • Clauzon G (1979) Le canyon messinien de la Durance (Provence, France): Une preuve paléogéographique du bassin profond de dessiccation. Palaeogeogr Palaeoclimatol Palaeoecol 29:15–40

    Google Scholar 

  • Clauzon G (1982) Le canyon messinien du Rhone; une preuve decive du “desiccated deep-basin model”(Hsue, Cita and Ryan, 1973). Bulletin de la Société Géologique de France 7:597–610

    Google Scholar 

  • Clauzon G (1990) Restitution de l’évolution géodynamique néogène du bassin du Roussillon et de l’unité adjacente des Corbières d’après les données écostratigraphiques et paléogéographiques. Paléobiologie Continentale 17:125–155

    Google Scholar 

  • Clauzon G (1996) Limites de séquences et évolution géodynamique/Sequence boundaries and geodynamic evolution. Géomorphologie : Relief, Processus, Environ 2:3–21. https://doi.org/10.3406/morfo.1996.867

    Article  Google Scholar 

  • Clauzon G, Suc JP, Aguilar JP, Ambert P, Cappetta H, Cravatte J, Drivaliari A, Domenech R, Dubar M, Leroy S (1990) Pliocene geodynamic and climatic evolutions in the French Mediterranean region. Iberian Neogene Basins:131–186

  • Clauzon G, Rubino JL, Suc JP, Zhang Z (1996a) Les rias pliocènes du Var et de Ligurie: comblement sédimentaire et évolution géodynamique. Livret guide-Excursion commune du Groupe Français d’Etude du Néogène et du Groupe Français de Géomorphologie

    Google Scholar 

  • Clauzon G, Suc J-P, Gautier F, Berger A, Loutre M-F (1996b) Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24:363–366. https://doi.org/10.1130/0091-7613(1996)024<0363:AIOTMS>2.3.CO;2

    Article  Google Scholar 

  • Cornée J-J, Maillard A, Conesa G, Garcia F, Saint Martin J-P, Sage F, Münch P (2008) Onshore to offshore reconstruction of the Messinian erosion surface in Western Sardinia, Italy: implications for the Messinian salinity crisis. Sediment Geol 210:48–60. https://doi.org/10.1016/j.sedgeo.2008.06.005

    Article  Google Scholar 

  • Crosta G, Zanchi A (2000) Deep seated slope deformations: huge, extraordinary, enigmatic phenomena. In: Landslides in research, theory and practice: Proceedings of the 8th International Symposium on Landslides Held in Cardiff on 26–30 June 2000. Thomas Telford Publishing, pp 1–351

  • Crosta GB, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605:13–33

    Google Scholar 

  • Dardeau G (1983) Le Jurassique des Alpes-Maritimes (France): stratigraphie, paléogéographie, évolution du contexte structural à la jonction des dispositifs dauphinois, briançonnais et provençal. Université Nice Sophia Antipolis

  • Darnault R, Rolland Y, Braucher R, Bourlès D, Revel M, Sanchez G, Bouissou S (2012) Timing of the last deglaciation revealed by receding glaciers at the Alpine-scale: impact on mountain geomorphology. Quat Sci Rev 31:127–142

    Google Scholar 

  • Dubar M (2012) Les dépôts pliocènes et pléistocènes de la basse vallée du Var (Nice, Alpes-Maritimes): variations du niveau marin et néotectonique depuis 5 millions d’années. Ann Mus Hist Nat Nice 26:35–54

    Google Scholar 

  • El Bedoui S, Guglielmi Y, Lebourg T, Pérez J-L (2009) Deep-seated failure propagation in a fractured rock slope over 10,000 years: the La Clapière slope, the south-eastern French Alps. Geomorphology 105:232–238

    Google Scholar 

  • Fabre D, Dayre M (1982) Proprietes geotechniques de gypses et anhydrites du trias des alpes de savoie (France). Bull Int Assoc Eng Geol 25:91–98. https://doi.org/10.1007/BF02603198

    Article  Google Scholar 

  • Frattini P, Crosta GB, Rossini M, Allievi J (2018) Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides 15:1053–1070. https://doi.org/10.1007/s10346-017-0940-6

    Article  Google Scholar 

  • Gargani J, Bache F, Jouannic G, Gorini C (2014) Slope destabilization during the Messinian salinity crisis. Geomorphology 213:128–138

    Google Scholar 

  • Gautier F, Clauzon G, Suc J-P, Cravatte J, Violanti D (1994) Age et durée de la crise de salinité messinienne. Comptes rendus de l’Académie des sciences. Série 2. Sciences de la Terre et Des Planètes 318:1103–1109

    Google Scholar 

  • Gèze B, Nestéroff W (1968) Notice explicative, carte géol. France (1/50 000), feuille Menton-Nice, Orléans

    Google Scholar 

  • Ginsburg L, Montenant C, Baudron JC, Alziar G (1980) Carte géologique de France au /150000e, n°972. feuille de Roquesteron

  • Gorini C, Lofi J, Duvail C, Dos Reis AT, Guennoc P, Lestrat P, Mauffret A (2005) The Late Messinian salinity crisis and Late Miocene tectonism: interaction and consequences on the physiography and post-rift evolution of the Gulf of Lions margin. Mar Pet Geol 22:695–712

    Google Scholar 

  • Guebhardt A (1903) L'âge pliocène de la brèche du Broc. B.S.G.F, p 667

  • Guerrero J, Gutiérrez F, Lucha P (2004) Paleosubsidence and active subsidence due to evaporite dissolution in the Zaragoza area (Huerva River valley, NE Spain): processes, spatial distribution and protection measures for transport routes. Eng Geol 72:309–329

    Google Scholar 

  • Guglielmi Y (1993) Hydrogéologie des aquifères plio-quaternaires de la basse vallée du Var (Alpes-Maritimes, France). In: Université d’Avignon et des pays de Vaucluse

    Google Scholar 

  • Gutiérrez F, Ortuño M, Lucha P, Guerrero J, Acosta E, Coratza P, Piacentini D, Soldati M (2008) Late Quaternary episodic displacement on a sackung scarp in the central Spanish Pyrenees. Secondary paleoseismic evidence? Geodin Acta 21:187–202

    Google Scholar 

  • Gutiérrez F, Linares R, Roqué C, Zarroca M, Rosell J, Galve JP, Carbonel D (2012) Investigating gravitational grabens related to lateral spreading and evaporite dissolution subsidence by means of detailed mapping, trenching, and electrical resistivity tomography (Spanish Pyrenees). Lithosphere 4:331–353

    Google Scholar 

  • Gutiérrez-Santolalla F, Acosta E, Ríos S, Guerrero J, Lucha P (2005) Geomorphology and geochronology of sackung features (uphill-facing scarps) in the Central Spanish Pyrenees. Geomorphology 69:298–314

    Google Scholar 

  • Harp EL, Jibson RW (1996) Landslides triggered by the 1994 Northridge, California, earthquake. Bull Seismol Soc Am 86:S319–S332

    Google Scholar 

  • Hippolyte J-C, Brocard G, Tardy M, Nicoud G, Bourlès D, Braucher R, Ménard G, Souffaché B (2006) The recent fault scarps of the Western Alps (France): tectonic surface ruptures or gravitational sackung scarps? A combined mapping, geomorphic, levelling, and 10Be dating approach. Tectonophysics 418:255–276

    Google Scholar 

  • Hippolyte J-C, Bourlès D, Braucher R, Carcaillet J, Léanni L, Arnold M, Aumaitre G (2009) Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy (France). Geomorphology 108:312–320

    Google Scholar 

  • Hippolyte J-C, Clauzon G, Suc J-P (2011) Messinian-Zanclean canyons in the Digne nappe (southwestern Alps): tectonic implications. Bulletin de la Société Géologique de France 182:111–132. https://doi.org/10.2113/gssgfbull.182.2.111

    Article  Google Scholar 

  • Hippolyte J-C, Bourlès D, Léanni L, Braucher R, Chauvet F, Lebatard AE (2012) 10Be ages reveal> 12ka of gravitational movement in a major sackung of the Western Alps (France). Geomorphology 171:139–153

    Google Scholar 

  • Hou Y, Chigira M, Tsou C-Y (2014) Numerical study on deep-seated gravitational slope deformation in a shale-dominated dip slope due to river incision. Eng Geol 179:59–75

    Google Scholar 

  • Hradeckỳ J, Pánek T (2008) Deep-seated gravitational slope deformations and their influence on consequent mass movements (case studies from the highest part of the Czech Carpathians). Nat Hazards 45:235–253

    Google Scholar 

  • Hsü KJ, Cita MB, Rian WBF (1973) The origin of the Mediterranean evaporite. In: Rian WBF et al (eds) Initial reports of the deep sea drilling project, pp 1203–1231

    Google Scholar 

  • Irr F (1984) Paléoenvironnements et évolution géodynamique néogènes et quaternaire de la bordure nord du bassin méditerranéen occidental: un système de pente de la paléo-marge liguro-provençal

  • Jibson RW, Harp EL, Schulz W, Keefer DK (2004) Landslides triggered by the 2002 Denali Fault, Alaska, earthquake and the inferred nature of the strong shaking. Earthquake Spectra 20:669–691

    Google Scholar 

  • Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160

    Google Scholar 

  • Jomard H (2006) Analyse multi-échelles des déformations gravitaires du Massif de l’Argentera Mercantour. Université Nice Sophia Antipolis

  • Jomard H, Lebourg T, Guglielmi Y (2014) Morphological analysis of deep-seated gravitational slope deformation (DSGSD) in the western part of the Argentera massif. A morpho-tectonic control? Landslides 11:107–117. https://doi.org/10.1007/s10346-013-0434-0

    Article  Google Scholar 

  • Jorda M, Rosique T, Évin J (2000) Données nouvelles sur l’âge du dernier maximum glaciaire dans les Alpes méridionales françaises. Comptes Rendus de l’Académie des Sci-Series IIA-Earth Planet Sci 331:187–193

    Google Scholar 

  • Julian M (1980) Les alpes maritimes franco-italiennes. etude morphologique (Thèse d’Etat thesis). Aix-Marseille II

  • Keefer DK (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 10:265–284

    Google Scholar 

  • Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261:578–589. https://doi.org/10.1016/j.epsl.2007.07.025

    Article  Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    Google Scholar 

  • Larroque C (2009) Aléa sismique dans une région intraplaque à sismicité modérée: la jonction Alpes-Bassin Ligure. Université Nice Sophia Antipolis

  • Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247–251

    Google Scholar 

  • Larsen IJ, Montgomery DR (2012) Landslide erosion coupled to tectonics and river incision. Nat Geosci 5:468–473. https://doi.org/10.1038/ngeo1479

    Article  Google Scholar 

  • Laurent O (1998) Modalités de la structuration d’un prisme de front de chaîne: L’exemple de l’arc de Castellane (Chaînes subalpines méridionales, France). École doctorale Sciences fondamentales et appliquées (Nice)

  • Laurent O, Stéphan J-F, Popoff M (2000) Modalité de la structuration miocène de la branche sud de l’arc de Castellande (chaîne subalpines méridionales). Géol Fr 3:33–65

    Google Scholar 

  • Lofi J, Gorini C, Berné S, Clauzon G, Dos Reis AT, Ryan WB, Steckler MS (2005) Erosional processes and paleo-environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Mar Geol 217:1–30

    Google Scholar 

  • Loget N, Davy P, Van den Driessche J (2006) Mesoscale fluvial erosion parameters deduced from modeling the Mediterranean sea level drop during the Messinian (late Miocene). J Geophys Res: Earth Surf 111

  • Maillard A, Gorini C, Mauffret A, Sage F, Lofi J, Gaullier V (2006) Offshore evidence of polyphase erosion in the Valencia Basin (Northwestern Mediterranean): scenario for the Messinian Salinity Crisis. Sediment Geol 188:69–91

    Google Scholar 

  • Maisch M, Wipf A, Denneler B, Battaglia J, Benz C (1999) Die Gletscher der Schweizer Alpen: Gletscherhochstand 1850–Aktuelle Vergletscherung-Gletscherschwund-Szenarien 21. Jahrhundert, Schlussbericht NFP31 vdf Hochschulverlag, ETH Zurich

  • Malgot J (1977) Deep-seated gravitational slope deformations in neovolcanic mountain ranges of Slovakia. Bulletin of the International Association of Engineering Geology-Bulletin de l’Association Internationale de Géologie de l’Ingénieur 16:106–109

    Google Scholar 

  • Manzi V, Gennari R, Hilgen F, Krijgsman W, Lugli S, Roveri M, Sierro FJ (2013) Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25:315–322. https://doi.org/10.1111/ter.12038

    Article  Google Scholar 

  • McCalpin JP, Hart EW (2003) Ridge-top spreading features and relationship to earthquakes, San Gabriel Mountains Region, Southern California: Part A. Distribution and description of ridge-top depressions (sackungen): Part B. Paleoseismic investigations of ridge-top depressions. In: Hart EW (ed) Ridge-top spreading in California. California Geological Survey, Open-File Report

  • Mocochain L, Clauzon G, Bigot J-Y (2006) Réponses de l’endokarst ardéchois aux variations eustatiques générées par la crise de salinité messinienne. Bull Soc Géol Fr 177:27–36

    Google Scholar 

  • Morelli S, Pazzi V, Frodella W, Fanti R (2018) Kinematic reconstruction of a deep-seated gravitational slope deformation by geomorphic analyses. Geosciences 8:26

    Google Scholar 

  • Moro M, Saroli M, Salvi S, Stramondo S, Doumaz F (2007) The relationship between seismic deformation and deep-seated gravitational movements during the 1997 Umbria–Marche (Central Italy) earthquakes. Geomorphology 89:297–307. https://doi.org/10.1016/j.geomorph.2006.12.013

    Article  Google Scholar 

  • Pánek T, Tábořík P, Klimeš J, Komárková V, Hradeckỳ J, Št’astnỳ M (2011) Deep-seated gravitational slope deformations in the highest parts of the Czech Flysch Carpathians: evolutionary model based on kinematic analysis, electrical imaging and trenching. Geomorphology 129:92–112

    Google Scholar 

  • Pedrazzini A, Jaboyedoff M, Loye A, Derron M-H (2013) From deep seated slope deformation to rock avalanche: destabilization and transportation models of the Sierre landslide (Switzerland). Tectonophys Slope Tectonics: Struct Slope Fail 605:149–168. https://doi.org/10.1016/j.tecto.2013.04.016

    Article  Google Scholar 

  • Pollet N (2004) Mouvements gravitaires rapides de grandes masses rocheuses: Apports des observations de terrain à la compréhension des processus de propagation et dépôt: Application aux cas de La Madeleine (Savoie, France), Flims (Grisons, Suisse) et Kofels (Tyrol, Autriche). École nationale des ponts et chaussées (France)

  • QGIS.org (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project http://qgis.org

  • Radbruch-Hall DH (1978) Gravitational creep of rock masses on slopes, in: Developments in geotechnical engineering. Elsevier, pp. In: 607–657

    Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) Index that quantifies topographic heterogeneity. Int J Therm Sci 5:23–27

    Google Scholar 

  • Sanchez G (2010) Chronologies et évolution de la déformation de la croute moyenne à la surface dans un prisme collisionel en décrochement: impacts sur l’aléa sismo-gravitaire: exemple des Alpes Sud-occidentales. Nice

  • Sanchez G, Rolland Y, Schreiber D, Giannerini G, Corsini M, Lardeaux J-M (2010) The active fault system of SW Alps. J Geodyn 49:296–302

    Google Scholar 

  • Savoye B, Piper DJ (1991) The Messinian event on the margin of the Mediterranean Sea in the Nice area, southern France. Mar Geol 97:279–304

    Google Scholar 

  • Schroëtter JM (1997) L’enregistrement sédimentaire de la déformation mio- plio- quaternaire sur la bordure ouest de l’arc de Nice: analyse sédimento-morpho-structurale. D.E.A. Univ, Nice 21 p

    Google Scholar 

  • Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23. https://doi.org/10.1016/j.jsg.2015.02.002

    Article  Google Scholar 

  • Strak V (2012) L’évolution du relief le long des escarpements de faille normale active : observations, modélisations expérimentales et numériques (phdthesis). Université Pierre et Marie Curie - Paris VI

  • Tibaldi A, Ferrari L, Pasquarè G (1995) Landslides triggered by earthquakes and their relations with faults and mountain slope geometry: an example from Ecuador. Geomorphology 11:215–226

    Google Scholar 

  • Tibaldi A, Rovida A, Corazzato C (2004) A giant deep-seated slope deformation in the Italian Alps studied by paleoseismological and morphometric techniques. Geomorphology 58:27–47

    Google Scholar 

  • Tsou C-Y, Chigira M, Matsushi Y, Chen S-C (2015) Deep-seated gravitational deformation of mountain slopes caused by river incision in the Central Range, Taiwan: spatial distribution and geological characteristics. Eng Geol 196:126–138

    Google Scholar 

  • Varnes DJ, Radbruch-Hall DH, Varnes KL, Smith WK, Savage WZ (1990) Measurement of ridge-spreading movements (Sackungen) at Bald Eagle Mountain, Lake County, Colorado, 1975–1989. Dept. of the Interior, US Geological Survey

    Google Scholar 

  • Vernet J (1982) La phase d’édification post-miocène des alpes sur la transversale des Alpes-Maritimes. Bull Soc Hist Nat Toulouse 1:8

    Google Scholar 

  • Zanchetta G, Regattieri E, Isola I, Drysdale RN, Bini M, Baneschi I, Hellstrom JC (2016) The so-called “4.2 event” in the central Mediterranean and its climatic teleconnections. Alpine Mediterr Quaternary 29:5–17

    Google Scholar 

  • Zerathe S (2013) Origine et évolution des ruptures gravitaires de grande ampleur dans les chaînes subalpines méridionales à l’Holocène. Contraintes géomorphologiques, géochronologiques et géophysiques. Université Nice Sophia Antipolis

  • Zerathe S, Lebourg T (2012) Evolution stages of large deep-seated landslides at the front of a subalpine meridional chain (Maritime-Alps, France). Geomorphology 138:390–403

    Google Scholar 

  • Zerathe S, Lebourg T, Braucher R, Bourlès D (2014) Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity. Quat Sci Rev 90:106–127. https://doi.org/10.1016/j.quascirev.2014.02.015

    Article  Google Scholar 

Download references

Acknowledgments

We thank all the regions that make up this program. We also thank Loïc Santino for his support.

Funding

This study was financially supported by the Interreg-Alcotra-AD-VITAM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Drouillas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drouillas, Y., Lebourg, T., Zerathe, S. et al. Alpine deep-seated gravitational slope deformation and the Messinian Salinity Crisis. Landslides 18, 539–549 (2021). https://doi.org/10.1007/s10346-020-01504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01504-5

Keywords

Navigation