Skip to main content
Log in

Enhanced lithium intercalation and conduction in LiαFeTaxOyCz films by the addition of lithium oxides with an atmospheric pressure plasma jet

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An enhancement of lithium ionic intercalation and conduction performance of lithiated-organo-iron-tantalum oxide (LiαFeTaxOyCz) films has been accomplished by the addition of organo-lithium oxides (LiOyCz) into organo-iron-tantalum oxide (FeTaxOyCz) films using an atmospheric pressure plasma jet (APPJ) at various mixed concentrations of lithium tert-butoxide [(CH3)3COLi] and tantalum ethoxide [Ta(OC2O5)5] precursors. The rapid deposition of LiαFeTaxOyCz films onto polished stainless steel substrates at short exposed durations of 38–41 s with an APPJ has been investigated. The APPJ-polymerized LiαFeTaxOyCz films have noticeable Li+ ionic intercalation/deintercalation performance at 200 reversible cycles in a 1-M LiClO4-propylene carbonate electrolyte as analyzed by both potential sweep and potential step in situ Li+ ionic intercalation. The Li+ ion intercalated and deintercalated charges are significantly improved from 5.70 and 5.20 mC/cm2 for FeTaxOyCz film to 8.11 and 7.51 mC/cm2 for LiαFeTaxOyCz films, respectively. The Li+ ionic conduction performance of FeTaxOyCz film is slightly enhanced from 107 × 10−10 to 118 × 10−10 S/cm for LiαFeTaxOyCzfilm, as verified by electrochemical impedance spectroscopy in the devices of polyethylene terephthalate (PET)/indium tin oxide (ITO)/NiOx/FeTaxOyCz/NiOx/ITO and PET/ITO/NiOx/LiαFeTaxOyCz/NiOx/ITO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. He J, Li P, Lv W, Wen K, Chen Y, Zhang W (2016) Three-dimensional hierarchically structured aerogels constructed with layered MoS2/graphene nanosheets as free-standing anodes for high-performance lithium ion batteries. Electrochim Acta 215:12–18

    Article  CAS  Google Scholar 

  2. He J, Chen Y, Li P, Fu F, Wang Z, Zhang W (2015) Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots anchored graphene nanosheets as superior-capability anode for lithium-ion batteries. Electrochim Acta 182:424–429

    Article  CAS  Google Scholar 

  3. Yang P, Sun P, Mai W (2016) Electrochromic energy storage devices. Mater Today 19(7):394–402

    Article  CAS  Google Scholar 

  4. He J, Chen Y, Li P, Fu F, Wang Z, Zhang W (2020) Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Mater Horiz 7:1246–1278

    Article  Google Scholar 

  5. Moser ML, Li G, Chen M, Bekyarova W, Itkis ME, Haddon RC (2016) Fast electrochromic device based on single-walled carbon nanotube thin films. Nano Lett 16(9):5386–5393

    Article  CAS  PubMed  Google Scholar 

  6. Mjejri I, Doherty CM, Rubio-Martinez M, Drisko GL, Rougier A (2017) Double-sides electrochromic based on metal-organic frameworks. ACS Appl Mater Interfaces 9(46):39930–39934

    Article  CAS  PubMed  Google Scholar 

  7. Qian J, Ma D, Xu Z, Li D, Wang J (2018) Electrochromic properties of hydrothermally grown Prussian blue films and device. Sol Energy Mater Sol Cells 177:9–14

    Article  CAS  Google Scholar 

  8. Piccolo A, Simone F (2015) Energy performance of an all solid state electrochromic prototype for smart window applications. Energy Procedia 78:110–115

    Article  Google Scholar 

  9. Dakheel JA, Aoul KT (2017) Building applications, opportunities and challenges of active shading systems: a state-of-the-art review. Energies 10(10):1672

    Article  Google Scholar 

  10. Falco M, Simari C, Ferrara C, Nair RJ, Meligrana G, Bella F, Nicotera M, Einter M, Gerbaldi C (2019) Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes. Langmuir 35:8210–8219

    CAS  PubMed  Google Scholar 

  11. Scalia A, Bella F, Lamberti A, Gerldi C, Tresso E (2019) Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy 166:789–795

    Article  CAS  Google Scholar 

  12. Nair JR, Colo F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi GB, Passerini S, Gerbaldi C (2019) Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 412:398–407

    Article  CAS  Google Scholar 

  13. Suriyakumar S, Gopi S, Kathiresan M, Bose S, Gowd EB, Nair JR, Angulakshmi A, Meligrana G, Bella F, Gerbaldi C, Stephan AM (2018) Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim Acta 285:355–364

    Article  CAS  Google Scholar 

  14. Gao L, Li J, Ju Y, Wang L, Yan J, Chen B, Kang W, Deng N, Li Y (2020) Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries. Chem Eng J 389:124478

    Article  CAS  Google Scholar 

  15. Falco M, Castro L, Nair JR, Bella F, Barde F, Meligrana G, Gerbaldi C (2019) UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl Energ Mater 2(3):1600–1607

    Article  CAS  Google Scholar 

  16. Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J Energ Storage 26:100947

    Article  Google Scholar 

  17. Jung S-Y, Rajagopal R, Ryu K-S (2020) Synthesis and electrochemical performance of (100-x)Li7P3S11-xLi2OHBr composite solid electrolyte for all-solid-state lithium batteries. J Energ Chem 47:307–316

    Article  Google Scholar 

  18. Huang Y, He Y, Sheng H, Lu X, Dong H, Samanta S, Dong H, Li X, Kin DY, Mao H-K, Liu Y, Li H, Li H, Wang L (2019) Li-ion battery material under pressure: amorphization and enhanced conductivity of Li4Ti5O12. Natl Sci Rev 6:238–246

    Google Scholar 

  19. Deng B, Hsu PC, Chen G, Chandrashekar BN, Liao L, Ayitimuda Z, Wu J, Guo Y, Lin L, Zhou Y, Aisijiang M, Xie Q, Cui Y (2015) Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett 15(6):4206–4213

    Article  CAS  PubMed  Google Scholar 

  20. White CM, Gillaspie DT, Whitney E, Lee SH, Dillion AC (2009) Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition. Thin Solid Films 517(12):3596–3599

    Article  CAS  Google Scholar 

  21. Yun S, Lee Y-C, Park H-S (2016) Phase-controlled iron oxide nanobox deposited on hierarchically structured graphene networks for lithium ion storage and photocatalysis. Sci Rep 6:1–9

    Article  CAS  Google Scholar 

  22. Niwa T, Takai O (2010) Optical and electrochemical properties of all-solid-state transmittance-type electrochromic devices. Thin Solid Films 518(6):1722–1727

    Article  CAS  Google Scholar 

  23. Frenning G, Engelmark F, Niklasson GA, Strømme M (2001) Li conduction in sputtered amorphous Ta2O5. J Electrochem Soc 148(5):A418–A421

    Article  CAS  Google Scholar 

  24. Seman MT, Robbins JJ, Leonhardt D, Agarwal S, Wolden CA (2008) Comparison of electrolyte performance for Ta2O5 thin films produced by pulsed and continuous wave PECVD. J Electrochem Soc 155(6):J168–J174

    Article  CAS  Google Scholar 

  25. Lin Y-S, Sung P-J, Hsieh M-H (2016) Effects of O2 gases addition on enhanced lithium ion intercalation and conduction of flexible transparent-lithiated tantalum oxide thin films synthesized by an atmospheric pressure plasma jet. Surf Coat Technol 303(Part A):215–225

    Article  CAS  Google Scholar 

  26. Fu ZW, Qin QZ (2000) Lithiation and electrochromic characteristics of composite Ta2O5 - TiO2 films fabricated by ultraviolet reactive laser ablation. J Electrochem Soc 147(6):2371–3474

    Article  CAS  Google Scholar 

  27. NuLi YN, Fu ZW, Chu YQ, Qin QZ (2003) Electrochemical and electrochromic characteristics of Ta2O5–ZnO composite films. Solid State Ionics 160(1–2):197–207

    Article  CAS  Google Scholar 

  28. Lin Y-S, Shie B-S, Lai Y-H, Chen J-H, Gu Z-W, Chen H, Lin C-F (2019) Lithium intercalation and conduction in Fe-containing tantalum oxide films synthesized with an atmospheric pressure plasma jet. J Solid State Electrochem 23(2):441–453

    Article  CAS  Google Scholar 

  29. Bonnet F, Ropital F, Lecour P, Espinat D, Huiban Y, Gengembre L, Berthier Y, Marcus P (2002) Study of the oxide/carbide transition on iron surfaces during catalytic coke formation. Surf Interf Anal 34(1):418–422

    Article  CAS  Google Scholar 

  30. Fang YWS, Jiang Y (1999) Effects of nitrogen on the carbon anode of a lithium secondary battery. Solid State Ionics 120:117–123

    Article  Google Scholar 

  31. Lu YC, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci Rep 2(715):1–6

    Google Scholar 

  32. Lin Y-S, Lu W-H, Tsai T-H, Hsieh M-H (2015) Direct one-step synthesis of flexible electrochromic tungsten/iron mixed oxide films onto flexible PET/ITO substrates using low temperature plasma polymerization. J Mater Sci-Mater Electron 26(11):9044–9055

    Article  CAS  Google Scholar 

  33. Santamaria S, Terracina S, Konno Y, Habazaki H, Di Quarto F (2013) Physicochemical characterization and photoelectrochemical analysis of iron oxide films. J Solid State Electrochem 17(12):3005–3014

    Article  CAS  Google Scholar 

  34. Lin Y-S, Wu S-S, Tsai T-H (2010) Electrochromic properties of novel atmospheric pressure plasma jet-synthesized-organotungsten oxide films for flexible electrochromic devices. Sol Energ Mater Sol Cells 94(12):2283–2291

    Article  CAS  Google Scholar 

  35. Corbella C, Vives M, Pinyol A, Porqueras I, Person C, Bertran E (2003) Influence of the porosity of RF sputtered Ta2O5 thin films on their optical properties for electrochromic applications. Solid State Ionics 165(1-4):15–22

    Article  CAS  Google Scholar 

  36. Lv J, Luo H, Liang T (2015) Influence of pre-deformation and oxidation in high temperature water on corrosion resistance of type 304 stainless steel. J Nucl Mater 466:154–161

    Article  CAS  Google Scholar 

  37. Dobal PS, Katiyar RS, Jiang Y, Guo R, Bhalla AS (2000) Raman scattering study of a phase transition in tantalum pentoxide. J Raman Spectrosc 31(12):1061–1065

    Article  Google Scholar 

  38. Kovacs K, Kamnev AA, Mink J, Nemeth C, Kuzmann E, Megyes T, Grosz T, Medzihradszky-Schweiger H, Vertes A (2006) Mössbauer, vibrational spectroscopic and solution X-ray diffraction studies of the structure of iron(III) complexes formed with indole-3-alkanoic acids in acidic aqueous solutions. Struct Chem 17(1):105–120

    Article  CAS  Google Scholar 

  39. Cao X, Prozorov R, Kolty Y, Kataby G, Felner I, Gedanken A (1997) Synthesis of pure amorphous Fe2O3. J Mater Res 12(2):402–406

    Article  CAS  Google Scholar 

  40. Krishnaprasanth, Seetha M (2018) Solvent free synthesis of Ta2O5 nanoparticles and their photocatalytic properties. AIP Adv 8(5):055017

    Article  CAS  Google Scholar 

  41. Frenning G, Nilsson M, Westlinder J, Niklasson GA, Stromme Mattsson M (2001) Dielectric and Li transport properties of electron conducting and non-conducting sputtered amorphous Ta2O5 films. Electrochim Acta 46(13-14):2041–2046

    Article  CAS  Google Scholar 

  42. Leftheriotis G, Papaefthimiou S, Yianoulis P (2007) Dependence of the estimated diffusion coefficient of LixWO3 films on the scan rate of cyclic voltammetry experiments. Solid State Ionics 178(3-4):259–263

    Article  CAS  Google Scholar 

  43. Lin Y-S, Lin S-W, Laiao M-C, Lai Y-H, Gu Z-W (2019) Lithium ionic intercalation and conduction performance of flexible-lithiated-iron oxides films synthesized by low temperature-atmospheric pressure-plasma polymerization. Ionics 25:1577–1593

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Technology of the Republic of China (MOST106-2221-E-035-080-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Sen Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Shie, BS., Lai, YH. et al. Enhanced lithium intercalation and conduction in LiαFeTaxOyCz films by the addition of lithium oxides with an atmospheric pressure plasma jet. J Solid State Electrochem 25, 247–266 (2021). https://doi.org/10.1007/s10008-020-04803-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04803-y

Keywords

Navigation