Skip to main content
Log in

A family of convolution-based generalized Stockwell transforms

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to introduce a family of convolution-based generalized Stockwell transforms in the context of time-fractional-frequency analysis. The spirit of this article is completely different from two existing studies (see D. P. Xu and K. Guo [Appl. Geophys. 9 (2012) 73–79] and S. K. Singh [J. Pseudo-Differ. Oper. Appl. 4 (2013) 251–265]) in the sense that our approach completely relies on the convolution structure associated with the fractional Fourier transform. We first study all of the fundamental properties of the generalized Stockwell transform, including a relationship between the fractional Wigner distribution and the proposed transform. In the sequel, we introduce both the semi-discrete and discrete counterparts of the proposed transform. We culminate our investigation by establishing some Heisenberg-type inequalities for the generalized Stockwell transform in the fractional Fourier domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gabor, D.: Theory of communications. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  2. Debnath, L., Shah, F.A.: Wavelet Transforms and Their Applications. Birkhäuser, Boston (2015)

    MATH  Google Scholar 

  3. Debnath, L., Shah, F.A.: Lectuer Notes on Wavelet Transforms. Birkhäuser, Boston (2017)

    Book  Google Scholar 

  4. Duabechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  5. Srivastava, H.M., Khatterwani, K., Upadhyay, S.K.: A certain family of fractional wavelet transformations. Math. Methods Appl. Sci. 42, 3103–3122 (2019)

    Article  MathSciNet  Google Scholar 

  6. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: the \(S\)-transform. IEEE Trans. Signal Process. 44, 998–1001 (1996)

    Article  Google Scholar 

  7. Stockwell, R.G.: A basis for efficient representation of the \(S\)-transform. Digit. Signal Process. 17, 371–393 (2007)

    Article  Google Scholar 

  8. Ma, J., Jiang, J.: Analysis and design of modified window shapes for S-transform to improve time-frequency localization. Mech. Syst. Signal Process. 58, 271–284 (2015)

    Article  Google Scholar 

  9. Xu, D.P., Guo, K.: Fractional \(S\)-transform-part 1: theory. Appl. Geophys. 9, 73–79 (2012)

    Article  Google Scholar 

  10. Du, Z.C., Xu, D.P., Zhang, J.M.: Fractional \(S\)-transform-part 2: application to reservoir prediction and fluid identification. Appl. Geophys. 13, 343–352 (2016)

    Article  Google Scholar 

  11. Akila, L., Roopkumar, R.: Quaternionic stockwell transform. Integr. Trans. Spec. Funct. 27, 484–504 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hutniková, M., Mis̆ková, A.: Continuous Stockwell transform: Coherent states and localization operators, J. Math. Phys. 56, 1–15 (2015)

  13. Riba, L., Wong, M.: Continuous inversion formulas for multi-dimensional modified Stockwell transforms. Integr. Trans. Spec. Funct. 26, 9–19 (2015)

    Article  MathSciNet  Google Scholar 

  14. Battisti, U., Riba, L.: Window-dependent bases for efficient representations of the Stockwell transform. Appl. Comput. Harmon. Anal. 40, 292–320 (2016)

    Article  MathSciNet  Google Scholar 

  15. Drabycz, S., Stockwell, R.G., Mitchell, J.R.: Image texture characterization using the discrete orthonormal \(S\)-transform. J. Digit. Imaging. 22, 696–708 (2009)

    Article  Google Scholar 

  16. Moukadem, A., Bouguila, Z., Abdeslam, D.O., Dieterlen, A.: A new optimized Stockwell transform applied on synthetic and real non-stationary signals. Digit. Signal Process. 46, 226–238 (2015)

    Article  MathSciNet  Google Scholar 

  17. Shah, F.A., Tantary, A.Y.: Non-isotropic angular Stockwell transform and the associated uncertainty principles. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1622681

  18. Shah, F.A., Tantary, A.Y.: Linear canonical Stockwell transform. J. Math. Anal. Appl. 484, 123673 (2020)

    Article  MathSciNet  Google Scholar 

  19. Dai, H.Z., Zheng, Z.B., Wang, W.: A new fractional wavelet transform. Commun. Nonlinear Sci. Numer. Simulat. 44, 19–36 (2017)

    Article  MathSciNet  Google Scholar 

  20. Singh, S.K.: Fractional \(S\)-transform on spaces of type \(W\). J. Pseudo-Differ. Oper. Appl. 4, 251–265 (2013)

    Article  MathSciNet  Google Scholar 

  21. Almeida, L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42, 3084–3091 (1994)

    Article  Google Scholar 

  22. Zhang, Z.C.: Novel Wigner distribution and ambiguity function associated with the linear canonical transform. Optik 127, 4995–5012 (2016)

    Article  Google Scholar 

  23. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    Article  MathSciNet  Google Scholar 

  24. Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897–1905 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Battle, G.: Heisenberg inequalities for wavelet states. Appl. Comput. Harmon. Anal. 4, 119–146 (1997)

    Article  MathSciNet  Google Scholar 

  26. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. 5, 201–226 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Xu, G.L., Wang, X.T., Xu, X.G.: The logarithmic, Heisenberg’s and short-time uncertainty principles associated with fractional Fourier transform. Signal Process. 89, 339–343 (2009)

    Article  Google Scholar 

  28. Su, Y.: Heisenberg type uncertainty principle for continuous Shearlet transform. J. Nonlinear Sci. Appl. 9, 778–786 (2016)

    Article  MathSciNet  Google Scholar 

  29. Bahri, M., Shah, F.A., Tantary, A.Y.: Uncertainty principles for the continuous shearlet transforms in arbitrary space dimensions. Integ. Transf. Special Funct. (2020). https://doi.org/10.1080/10652469.2019.1707816

    Article  MathSciNet  Google Scholar 

  30. Shah, F.A., Tantary, A.Y.: Polar wavelet transform and the associated uncertainty principles. Int. J. Theor. Phys. 57, 1774–1786 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the esteemed editor and the referee for their valuable comments and suggestions. The second-named author was financially supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India under Grant No. EMR/2016/007951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdous A. Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, H.M., Shah, F.A. & Tantary, A.Y. A family of convolution-based generalized Stockwell transforms. J. Pseudo-Differ. Oper. Appl. 11, 1505–1536 (2020). https://doi.org/10.1007/s11868-020-00363-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-020-00363-x

Keywords

Mathematics Subject Classification

Navigation