Skip to main content

Advertisement

Log in

Infra-Red Emission and Electrochemical Properties of CuO/ZnO Nanocubes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study proposes a facile cost-effective precipitation method to synthesis three-dimensional CuO/ZnO nanocubes structure to fabricate a cost-effective energy storage device. X-ray diffraction reveals that the synthesized CuO and ZnO has monoclinic and hexagonal structure without impurity. Composition and functional group are confirmed by FT-Raman studies and EDAX spectrum. High resolution Scanning Electron Microscope shows that ZnO substitution prompts spherical to cube. The optical indirect bandgap is found to be 1.77 and 1.93 eV for CuO and CuO/ZnO respectively. Electrochemical performance of three-dimensional structure of pseudocapacitive CuO/ZnO nanocubes is facilitated electron diffusion pathways and more active sites for electrochemical reactions. An electrochemical impedance study shows that the CuO/ZnO nanocubes have higher charge transfer rate. It reveals electrochemical performance with a specific capacitance of 208 F/g at a scan rate of 5 mV/s. Dielectric properties of CuO/ZnO nanocubes can be used in high-frequency device applications. The fluorescence spectrum validates that the infra-red emission from CuO and CuO/ZnO might be used in optoelectronic devices. This is the first ever report on infra-red emission and dielectric properties of CuO/ZnO nanocubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig.2
Fig. 3
Fig.4
Fig.5
Fig. 6

Similar content being viewed by others

References

  1. S.M. Pawar, J. Kim, A.I. Inamdar, H. Woo, Y. Jo, B.S. Pawar, S. Cho, H. Kim, H. Im, Scientific Reports 6, 21310 (2016)

    Article  CAS  Google Scholar 

  2. X. He, J. Bae, Journal of Elec. Materi. 47, 5468 (2018)

    Article  CAS  Google Scholar 

  3. R. Suresh, K. Tamilarasan, D.S. Vadivu, Journal of Ovonic Research 12(4), 215 (2016)

    CAS  Google Scholar 

  4. R.K. Bedi, I. Singh, A.C.S. Appl, Mater. Interfaces 2, 1361 (2010)

    Article  CAS  Google Scholar 

  5. M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116(6), 3722 (2016)

    Article  CAS  Google Scholar 

  6. Z. Li, M. Jia, B. Abraham, J.C. Blake, D. Bodine, J.T. Newberg, L. Gundlach, Langmuir 34(3), 961 (2018)

    Article  CAS  Google Scholar 

  7. X. Zheng, G. Shen, C. Wang, Nat. Commun. 8, 14921 (2017)

    Article  CAS  Google Scholar 

  8. L. Hou, C. Zhang, L. Li, C. Du, X. Li, X.F. Kang, W. Chen, Talanta 188, 41 (2018)

    Article  CAS  Google Scholar 

  9. M. Yin, F. Wang, H. Fan, L. Xu, S. Liu, J. Alloy. Compd. 672, 374 (2016)

    Article  CAS  Google Scholar 

  10. F. Wu, X. Wang, S. Hu, C. Hao, H. Gao, S. Zhou, Int. J. Hydrogen Energy 42(51), 30098 (2017)

    Article  CAS  Google Scholar 

  11. M. Hajfathalian, K.D. Gilroy, R.A. Hughes, S. Neretina, Small 12(25), 3444 (2016)

    Article  CAS  Google Scholar 

  12. L. Ge, X. Jing, J. Wang, J. Wang, S. Jamil, Qi Liu, F. Liu, M. Zhang, J. Mater. Chem. 21, 10750 (2011)

    Article  CAS  Google Scholar 

  13. M.H. Habibi, B. Karimi, J. Ind. Eng. Chem. 20, 1566 (2014)

    Article  CAS  Google Scholar 

  14. B. Li, Y. Wang, Superlatt. Microstruct. 47, 615 (2010)

    Article  CAS  Google Scholar 

  15. Z.-L. Liu, J.-C. Deng, J.-J. Deng, F.-F. Li, Sci. Eng. B 150, 99 (2008)

    Article  CAS  Google Scholar 

  16. J.X. Wang, X.W. Sun, Y. Yang, K.K. Akyaw, X.Y. Huang, J.Z. Yin, J. Wei, H.V. Demir, Nanotechnology 22, 325704 (2011)

    Article  CAS  Google Scholar 

  17. N Uma Sangari, P Velusamy (2016) J. Environ. Sci. Pollution Res. 2(1): 42

  18. M.A. Dar, Q. Ahsanulhaq, Y.S. Kim, J.M. Sohn, W.B. Kim, H.S. Shin, Appl. Surf. Sci. 255(12), 6279 (2009)

    Article  CAS  Google Scholar 

  19. J.F. Xu, W. Ji, Z.X. Shen, J. Raman Spectrosc. 30(5), 413 (1999)

    Article  CAS  Google Scholar 

  20. M. Rashad, M. Rusing, G. Berth, K. Lischka, A. Pawlis, Journal of Nanomaterials 2013, 1–6 (2013)

    Article  Google Scholar 

  21. J.C. Irwin, T. Wei, J. Phys.: Condens. Matter 3(3), 299 (1991)

    CAS  Google Scholar 

  22. T.H. Tran, V.T. Nguyen, International Scholarly Research Notices (2014). https://doi.org/10.1155/2014/856592

    Article  PubMed  PubMed Central  Google Scholar 

  23. R. Khoshbin, M. Haghighi, N. Asgari, Mater Res Bull. 48, 767 (2013)

    Article  CAS  Google Scholar 

  24. R. Khoshbin, M. Haghighi, Journal of Renewable and Sustainable Energy 7, 023127 (2015)

    Article  Google Scholar 

  25. P. Mallick, S. Sahu, Nanoscience and Nanotechnology 2(3), 71 (2012)

    Article  Google Scholar 

  26. Y. H. Elbashar, H. A. Abd El-Ghany, (2017) Opt. Quant. Electron, 49(9):310

  27. D. Caffrey, E. Norton, C. Coileáin, C.M. Smith, B. Bulfin, L. Farrell, I.V. Shvets, K. Fleischer, Decoupling the refractive index from the electrical properties of transparent conducting oxides via periodic superlattices. Sci Rep 6(1), 33006 (2016)

    Article  CAS  Google Scholar 

  28. B. Troudi, O. Halimi, M. Sebais, B. Boudine, A. Djebli, International Journal of Mechanical and Production Engineering 5, 115 (2017)

    Google Scholar 

  29. R. Divya, M. Meena, C.K. Mahadevan, C.M. Padma, Journal of Engineering Research and Applications 4(5), 01 (2014)

    Google Scholar 

  30. D. Wu, Q. Zhang, M. Tao, Physical Review B-Condensed Matter and Materials Physics 73(23), 235206 (2006)

    Article  Google Scholar 

  31. X. Fuku, K. Kaviyarasu, N. Matinise, M. Maaza, Nanoscale Res. Lett. 11, 386 (2016)

    Article  CAS  Google Scholar 

  32. M. Saranya, R. Ramachandran, F. Wang, Journal of Science: Advanced Materials and Devices 1(4), 454 (2016)

    Google Scholar 

  33. A. Aljaafari, N. Parveen, F. Ahmad, M.W. Alam, S.A. Ansari, Self-assembled Cube-like Copper Oxide Derived from a Metal-Organic Framework as a High-Performance Electrochemical Supercapacitive Electrode Material. Sci Rep. 9(1), 9140 (2019)

    Article  Google Scholar 

  34. P. Gao, Y. Gong, J. Electrochem. Soc. 166(10), B859 (2019)

    Article  CAS  Google Scholar 

  35. H. Parangusan, D. Ponnamma, M. Maadeed, RSC Adv. 7(79), 50156–50165 (2017)

    Article  CAS  Google Scholar 

  36. S. Choudhary, Indian Journal Chemical Technology 24, 311 (2017)

    CAS  Google Scholar 

  37. R.I. Mahdi, W.H.A. Majid, RSC Adv. 6, 81296 (2016)

    Article  CAS  Google Scholar 

  38. Y. Lu, J. Claude, L.E. Norena-Franco, Q. Wang, J. Phys. Chem. B 112, 10411 (2008)

    Article  CAS  Google Scholar 

  39. W.C. Gan, W.H.A. Majid, Smart Mater. Struct. 23, 045026 (2014)

    Article  Google Scholar 

  40. A. De, S. Kundu, J. Ceram. Sci. Technol. 08, 463 (2017)

    Google Scholar 

  41. S. Suresh, J. Nano Research 34, 91 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thangavel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganthi, N., Thangavel, S. & Pushpanathan, K. Infra-Red Emission and Electrochemical Properties of CuO/ZnO Nanocubes. J Inorg Organomet Polym 30, 5224–5233 (2020). https://doi.org/10.1007/s10904-020-01700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01700-9

Keywords

Navigation