Skip to main content
Log in

Environmentally Friendly Synthesis of Velutipes-Shaped Ni@CNTs Composites as Efficient Thin Microwave Absorbers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An environmentally friendly solvent-free strategy for synthesis of velutipes-shaped Ni@CNTs-x composites as high-performance electromagnetic wave (EMW) absorbers by combining Ni particles with carbon nanotubes (Ni@CNTs) through in situ pyrolysis of a mixture of nickel nitrate and melamine is proposed. The CNTs contained several microporous structures, thereby facilitating a reduction in density and an enhancement of the EMW absorption. The EMW absorption performance first increased then decreased with increasing Ni content. The effective absorption bandwidth (RL < −10 dB) of the synthesized Ni@CNTs-x was up to 5.45 GHz for a thickness of 1.79 mm, while the minimum reflection loss (RLmin) was −60.56 dB at 17.32 GHz for a thickness of 1.582 mm and 20 wt.% loading. Overall, the results of this study indicate that this facile environmentally friendly method is effective to prepare excellent, thin, lightweight EMW absorbers with wide absorption bandwidth and high absorption efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, and J. Yuan, ACS Appl. Mater. Interfaces 4, 6949 (2012).

    CAS  Google Scholar 

  2. Y. Cheng, J. Cao, Y. Li, Z. Li, H. Zhao, G. Ji, and Y. Du, ACS Sustain. Chem. Eng. 6, 1427 (2017).

    Google Scholar 

  3. Y. Cheng, Y. Zhao, H. Zhao, H. Lv, X. Qi, J. Cao, G. Ji, and Y. Du, Chem. Eng. J. 372, 390 (2019).

    CAS  Google Scholar 

  4. Z. Jia, B. Wang, A. Feng, J. Liu, M. Zhang, Z. Huang, and G. Wu, J. Alloys Compd. 799, 216 (2019).

    CAS  Google Scholar 

  5. P.P. Kuzhir, A.G. Paddubskaya, M.V. Shuba, S.A. Maksimenko, A. Celzard, V. Fierro, G. Amaral-Labat, A. Pizzi, G. Valušis, J. Macutkevic, M. Ivanov, J. Banys, S. Bistarelli, A. Cataldo, M. Mastrucci, F. Micciulla, I. Sacco, E. Stefanutti, and S. Bellucci, J. Nanophoton. 6, 061715 (2012).

    Google Scholar 

  6. D. Xu, X. Xiong, P. Chen, Q. Yu, H. Chu, S. Yang, and Q. Wang, J. Magn. Magn. Mater. 469, 428 (2019).

    CAS  Google Scholar 

  7. Q. Zeng, P. Chen, Q. Yu, H.R. Chu, X.H. Xiong, D.W. Xu, and Q. Wang, Sci. Rep. 7, 8388 (2017).

    Google Scholar 

  8. S. Gao, Q. An, Z. Xiao, S. Zhai, D. Yang, and A.C.S. Appl, Nano Mater. 1, 5895 (2018).

    CAS  Google Scholar 

  9. M. Zhang, Z. Jiang, H. Si, X. Zhang, C. Liu, C. Gong, Y. Zhang, and J. Zhang, Phys. Chem. Chem. Phys. 22, 8639 (2020).

    CAS  Google Scholar 

  10. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, J. Mater. Chem. C 1, 765 (2013).

    CAS  Google Scholar 

  11. M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, and Y. Gogotsi, ACS Appl. Mater. Interfaces 9, 20038 (2017).

    CAS  Google Scholar 

  12. M. Zhang, X. Fang, Y. Zhang, J. Guo, C. Gong, D. Estevez, F. Qin, and J. Zhang, Nanotechnology 31, 275707 (2020).

    Google Scholar 

  13. Y. Liu, H. Xing, L. Wang, Z. Liu, H. Wang, and H. Jia, NANO 13, 1850059 (2018).

    CAS  Google Scholar 

  14. C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, and X. Han, ACS Appl. Mater. Interfaces 7, 20090 (2015).

    CAS  Google Scholar 

  15. J. Liu, Y. Duan, L. Song, and X. Zhang, Org. Electron. 63, 175 (2018).

    CAS  Google Scholar 

  16. S. Li, Y. Huang, N. Zhang, M. Zong, and P. Liu, J. Alloys Compd. 774, 532 (2019).

    CAS  Google Scholar 

  17. J. Kuang, P. Jiang, X. Hou, T. Xiao, Q. Zheng, Q. Wang, W. Liu, and W. Cao, Solid State Sci. 91, 73 (2019).

    CAS  Google Scholar 

  18. H. Wei, X. Yin, X. Li, M. Li, X. Dang, L. Zhang, and L. Cheng, Carbon 147, 276 (2019).

    CAS  Google Scholar 

  19. K. Hong, S. Nam, C. Yang, S.H. Kim, D.S. Chung, W.M. Yun, and C.E. Park, Org. Electron. 10, 363 (2009).

    CAS  Google Scholar 

  20. S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998).

    CAS  Google Scholar 

  21. G.F. Audette, A. Yaseen, N. Bragagnolo, and R. Bawa, Biomedicines 7, 46 (2019).

    CAS  Google Scholar 

  22. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 184, 1340 (1999).

    Google Scholar 

  23. M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, and R.H. Baughman, Science 309, 1215 (2005).

    CAS  Google Scholar 

  24. I. Elizabeth, A.K. Nair, B.P. Singh, and S. Gopukumar, Electrochim. Acta 230, 98 (2017).

    CAS  Google Scholar 

  25. L. Sha, P. Gao, T. Wu, and Y. Chen, ACS Appl. Mater. Interfaces 9, 40412 (2017).

    CAS  Google Scholar 

  26. H. Zhao, Y. Cheng, X. Liang, Y. Du, and G. Ji, Eng. Chem. Res. 57, 2155 (2018).

    CAS  Google Scholar 

  27. N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, and S.Y. Fu, ACS Appl. Mater. Interfaces 9, 2973 (2017).

    CAS  Google Scholar 

  28. Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijim, L. Zhou, K.T. Yue, S. Zhang, and S. Zhang, Carbon 37, 1449 (1999).

    CAS  Google Scholar 

  29. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J.E. Fischer, Nature 388, 756 (1997).

    CAS  Google Scholar 

  30. M. Mehrabi, A. Reyhani, P. Parvin, and S.Z. Mortazavi, Int. J. Hydrogen Energy 44, 3812 (2019).

    CAS  Google Scholar 

  31. C.D. Scott, S. Arepalli, P. Nikolaev, and R.E. Smalley, Appl. Phys. A 72, 573 (2001).

    CAS  Google Scholar 

  32. E. Fleming, F. Du, E. Ou, L. Dai, and L. Shi, Carbon 145, 195 (2019).

    CAS  Google Scholar 

  33. Z. Zhu, X. Sun, G. Li, H. Xue, H. Guo, X. Fan, X. Pan, and J. He, J. Magn. Magn. Mater. 377, 95 (2015).

    CAS  Google Scholar 

  34. F. Wen, F. Zhang, and Z. Liu, J. Phys. Chem. C 115, 14025 (2011).

    CAS  Google Scholar 

  35. E-q Yang, X-s Qi, and G-h Zheng, ACS Appl. Nano Mater. 1, 5795 (2018).

    CAS  Google Scholar 

  36. Y. Lin, D.W. Baggett, J.W. Kim, E.J. Siochi, and J.W. Connell, ACS Appl. Mater. Interfaces 3, 1652 (2011).

    CAS  Google Scholar 

  37. W. Xu, G. Wang, and P. Yin, Carbon 139, 759 (2018).

    CAS  Google Scholar 

  38. Z. Zhang, Q. Zhu, X. Chen, Z. Wu, Y. He, Y. Lv, L. Zhang, and Y. Zou, Appl. Phys. Express 12, 011001 (2019).

    Google Scholar 

  39. N. Zhou, Q. An, Z. Xiao, S. Zhai, and Z. Shi, ACS Sustain. Chem. Eng. 5, 5394 (2017).

    CAS  Google Scholar 

  40. F. Xu, M. Minniti, P. Barone, A. Sindona, A. Bonanno, and A. Oliva, Carbon 46, 1489 (2008).

    CAS  Google Scholar 

  41. Y. Liu, Z. Chen, W. Xie, S. Song, Y. Zhang, and L. Don, ACS Sustain. Chem. Eng. 7, 5318 (2019).

    CAS  Google Scholar 

  42. T. Zhu, S. Chang, Y.-F. Song, M. Lahoubi, and W. Wang, Chem. Eng. J. 373, 755 (2019).

    CAS  Google Scholar 

  43. X. Li, L. Wang, W. You, L. Xing, L. Yang, X. Yu, J. Zhang, Y. Li, and R. Che, Nanoscale 11, 13269 (2019).

    CAS  Google Scholar 

  44. J Ji, Y Huang, J Yin, X Zhao, X Cheng, S He, X Li, J He, and J Liu, ACS Appl. Nano Mater. 3935 (2018).

  45. M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang, L. Zhang, and C. Gong, J. Phys. D Appl. Phys. 53, 02LT01 (2020).

    CAS  Google Scholar 

  46. X.F. Zhang, P.F. Guan, and X.L. Dong, Appl. Phys. Lett. 97, 033107 (2010).

    Google Scholar 

  47. S. Liu, M. Zhang, X. Lv, Y. Wei, Y. Shi, J. Zhang, L. Zhang, and C. Gong, Appl. Phys. Lett. 113, 083905 (2018).

    Google Scholar 

  48. L. Quan, F.X. Qin, Y.H. Li, D. Estevez, G.J. Fu, H. Wang, and H.X. Peng, Nanotechnology 29, 245706 (2018).

    CAS  Google Scholar 

  49. H.-B. Zhao, J.-B. Cheng, J.-Y. Zhu, and Y.-Z. Wang, J. Mater. Chem. C 7, 441 (2019).

    CAS  Google Scholar 

  50. W. Tuichai, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, and S. Maensiri, RSC Adv. 7, 95 (2017).

    CAS  Google Scholar 

  51. Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, and Y. Du, ACS Appl. Mater. Interfaces 9, 34243 (2017).

    CAS  Google Scholar 

  52. Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma, Y. Wang, P. Xu, and X. Han, ACS Appl. Mater. Interfaces 11, 4268 (2019).

    CAS  Google Scholar 

  53. Y. Wang, X. Han, P. Xu, D. Liu, L. Cui, H. Zhao, and Y. Du, Chem. Eng. J. 372, 312 (2019).

    CAS  Google Scholar 

  54. Z. Liu, H. Xing, Y. Liu, H. Wang, H. Jia, and X. Ji, J. Alloys Compd. 731, 745 (2018).

    CAS  Google Scholar 

  55. J Ding, L Wang, Y Zhao, L Xing, X Yu, G Chen, J Zhang, and R Che, Small 1902885 (2019).

Download references

Acknowledgements

This work was supported by the Dalian Science and Technology Innovation Fund Project (2019J11CY007), LiaoNing Revitalization Talents Program (XLYC 1802085 and 1807003), National Natural Science Foundation of China (No. 51303106), Fundamental Research Funds for the Central Universities (DUT18GF107, DUT20 TD207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The following files are available free of charge.

Supplementary material 1 (PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Qiu, H., Chen, P. et al. Environmentally Friendly Synthesis of Velutipes-Shaped Ni@CNTs Composites as Efficient Thin Microwave Absorbers. J. Electron. Mater. 49, 5368–5378 (2020). https://doi.org/10.1007/s11664-020-08248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08248-x

Keywords

Navigation