Skip to main content
Log in

The Performance of Ni-Doped Spinel-Type LiMn2O4 for Li-Ion Batteries: First-Principles Calculation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the performance of Ni-doped spinel-type LiMn2O4 (doping concentration 6.25%) for Li-ion batteries is studied using first-principles calculations based on density functional theory. It is found that Ni substituted for Mn3+ is the most favored in thermodynamics. After Ni-doping, the unit cell volume is reduced (about 0.6%), while the Mn3+ adjacent to the dopant Ni is oxidized to Mn4+, thus reducing the probability of Jahn–Teller distortion and disproportionation reactions. For Ni-doped spinel-type LiMn2O4 (Li8Mn15NiO32), Li ions in the Mn environment are easier to extract, while Mn3+ is the first to be oxidized; the first delithiation voltage increases by ∼ 12.6% to 4.457 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.S. Whittingham, Chem. Rev. 104, 4271 (2004).

    Article  CAS  Google Scholar 

  2. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Mater. Today 5, 252 (2015).

    Article  Google Scholar 

  3. J.B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010).

    Article  CAS  Google Scholar 

  4. J.B. Goodenough and K. Park, J. Am. Chem. Soc. 135, 1167 (2013).

    Article  CAS  Google Scholar 

  5. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources 226, 272 (2013).

    Article  CAS  Google Scholar 

  6. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).

    Article  CAS  Google Scholar 

  7. M. Lee, S. Lee, P. Oh, Y. Kim, and J. Cho, Nano Lett. 14, 993 (2014).

    Article  CAS  Google Scholar 

  8. X. Hao, X. Lin, W. Lu, and B.M. Bartlett, ACS Appl. Mater. Int. 6, 10849 (2014).

    Article  CAS  Google Scholar 

  9. M. Nakayama and M. Nogami, Solid State Commun. 150, 1329 (2010).

    Article  CAS  Google Scholar 

  10. W. Liu, D. Wang, Z. Wang, J. Deng, W. Lau, and Y. Zhang, Phys. Chem. Chem. Phys. 19, 6481 (2017).

    Article  CAS  Google Scholar 

  11. G. Singh, S.L. Gupta, R. Prasad, S. Auluck, R. Gupta, and A. Sil, J. Phys. Chem. Solids 70, 1200 (2009).

    Article  CAS  Google Scholar 

  12. Y. Gao, J.N. Reimers, and J.R. Dahn, Phys. Rev. B Condens. Matter 54, 3878 (1996).

    Article  CAS  Google Scholar 

  13. G. Hautier, S.P. Ong, A. Jain, C.J. Moore, and G. Ceder, Phys. Rev. B 85, 155208 (2012).

    Article  Google Scholar 

  14. F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, and G. Ceder, Phys. Rev. B 70, 235121 (2004).

    Article  Google Scholar 

  15. G. Kresse and J. Furthmuller, Phys. Rev. B. 54, 11169 (1996).

    Article  CAS  Google Scholar 

  16. A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, and G. Ceder, Phys. Rev. B 84, 045115 (2011).

    Article  Google Scholar 

  17. S.Q. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W.W. Ju, C.Y. Ouyang, and R.J. Xiao, Chin. Phys. B 25, 174 (2016).

    Google Scholar 

  18. P. Xiao, Z.Q. Deng, A. Manthiram, and G. Henkelman, J. Phys. Chem. C 116, 23201 (2012).

    Article  CAS  Google Scholar 

  19. T. Okumura, Y. Yamaguchi, and H. Kobayashi, Phys. Chem. Chem. Phys. 18, 17827 (2016).

    Article  CAS  Google Scholar 

  20. Z. Han, X. Jia, H. Zhan, and Y. Zhou, Electrochim. Acta 114, 772 (2013).

    Article  CAS  Google Scholar 

  21. Z. Zhang, Z. Chen, G. Wang, H. Ren, M. Pan, L. Xiao, K. Wu, L. Zhao, J. Yang, Q. Wu, J. Shu, D. Wang, H. Zhang, N. Huo, and J. Li, Phys. Chem. Chem. Phys. 18, 6869 (2016).

    Google Scholar 

Download references

Acknowledgments

This work was supported by Teaching Reform Research Project in Colleges and Universities of Jiangxi Provincial Education Department (Grant Nos. JXJG-18-24-1, JXJG-16-24-1) and Education and Teaching Research Project of Jiangxi University of Technology (Grant No. JG1808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Liu or Huili Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with regard to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Xu, H., Zhou, Q. et al. The Performance of Ni-Doped Spinel-Type LiMn2O4 for Li-Ion Batteries: First-Principles Calculation. J. Electron. Mater. 49, 5523–5527 (2020). https://doi.org/10.1007/s11664-020-08298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08298-1

Keywords

Navigation