Skip to main content
Log in

Comprehensive Study on Nebulizer-Spray-Pyrolyzed Eu-Doped PbS Thin Films for Optoelectronic Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

PbS films in undoped state and with various Eu contents (1 wt.%, 3 wt.%, and 5 wt.%) have been coated effectively on insulating glass substrates by a nebulized spray pyrolysis route. The effects of Eu doping on various properties including the photosensitivity of the PbS films were systematically analyzed. X-ray diffraction (XRD) analysis of the materials revealed a polycrystalline nature with crystallites showing simple cubic structure oriented along (200) direction. Based on the XRD data, the crystallite size, dislocation density, and lattice strain of the films with different doping concentrations were calculated and are consistently discussed. The secondary phase Eu3O4 formed when the Eu doping level was higher in the host solution. The Raman peaks detected at 190 cm−1, 236 cm−1, and 465 cm−1 confirmed formation of PbS. Scanning electron microscopy was used to reveal the morphology of the films as a function of the dopant concentration. Important optical properties including the bandgap, absorption coefficient, dielectric constant, index of refraction, and coefficient of extinction of the films are systematically reported. Optical study of the films revealed a variation of the bandgap from 2.14 eV to 2.81 eV with increasing Eu doping level. The 3 wt.% europium-doped PbS film showed better photosensitivity at 100 W/m2 compared with the other films based on current–voltage (IV) measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Banerjee, Nanotechnol. Sci. Appl. 4, 35 (2011).

    CAS  Google Scholar 

  2. E. Yücel, Y. Yücel, and B. Beleli, J. Alloys Compd. 642, 63 (2015).

    Google Scholar 

  3. E. Yücel, Y. Yücel, and B. Beleli, J. Cryst. Growth 422, 1 (2015).

    Google Scholar 

  4. J.H. Warner, N. Heckenberg, and H. Rubinsztein-Dunlop, Mater. Lett. 60, 3332 (2006).

    CAS  Google Scholar 

  5. B.K. Gupta, R. Thangaraj, and O.P. Agnihotri, Sol. Energy Mater. 1, 481 (1979).

    CAS  Google Scholar 

  6. V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos, Nature 370, 354 (1994).

    CAS  Google Scholar 

  7. I. Pop, C. Nascu, V. Ionescu, E. Indrea, and I. Bratu, Thin Sol. Films 307, 240 (1997).

    CAS  Google Scholar 

  8. H. Hirata and K. Higashiyama, Bull. Chem. Sci. Jpn. 44, 2420 (1971).

    CAS  Google Scholar 

  9. P. Nair, V. Garcia, A. Hernandez, and M. Nair, J. Phys. D Appl. Phys. 24, 1466 (1991).

    CAS  Google Scholar 

  10. S. Pawar, J. Shaikh, R. Devan, Y. Ma, D. Haranath, P. Bhosale, and P. Patil, Appl. Surf. Sci. 258, 1869 (2011).

    CAS  Google Scholar 

  11. T. Fu, Sens. Actuators B Chem. 140, 116 (2009).

    CAS  Google Scholar 

  12. X. Shen, Z. Li, Y. Cui, and Y. Pang, Int. J. Electrochem. Sci. 6, 3525 (2011).

    CAS  Google Scholar 

  13. R. Tyagi, S. Agarwal and V. Sethi, Electrical and Optical-Properties of Chemically Sprayed Lead Sulfide Films, Council Scientific Industrial Research Publ & Info Directorate, New Delhi City, p. 670 (1977)

  14. G.H. Blount, P.J. Schreiber, D.K. Smith, and R.T. Yamada, J. Appl. Phys. 44, 978 (1973).

    CAS  Google Scholar 

  15. G. Kothiyal and B. Ghosh, Prog. Cryst. Growth Charact. Mater. 20, 313 (1990).

    CAS  Google Scholar 

  16. Y.J. Yang, Mater. Sci. Eng. B 131, 200 (2006).

    CAS  Google Scholar 

  17. Z. Xiu, S. Liu, J. Yu, F. Xu, W. Yu, and G. Feng, J. Alloys Compd. 457, L9 (2008).

    CAS  Google Scholar 

  18. B. Thangaraju and P. Kaliannan, Semicond. Sci. Technol. 15, 849 (2000).

    CAS  Google Scholar 

  19. J. Puišo, S. Lindroos, S. Tamulevičius, M. Leskelä, and V. Snitka, Thin Solid Films 428, 223 (2003).

    Google Scholar 

  20. A. Martucci, J. Fick, S.-É. LeBlanc, M. LoCascio, and A. HachÉ, J. Non-Cryst. Solids 345–346, 639 (2004).

    Google Scholar 

  21. S.R. Rosario, I. Kulandaisamy, K.D.A. Kumar, K. Ramesh, H.A. Ibrahium, and N.S. Awwad, Int. J. Energy Res. 44, 4505 (2020).

    CAS  Google Scholar 

  22. S.R. Rosario, I. Kulandaisamy, A.M.S. Arulanantham, K.D.A. Kumar, S. Valanarasu, M.S. Hamdy, K.S. Al-Namshah, and A.M. Alhanash, Mater. Res. Exp. 6, 056201 (2019).

    CAS  Google Scholar 

  23. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, and S. AlFaify, Mater. Sci. Semicond. Proc. 107, 104807 (2020).

    CAS  Google Scholar 

  24. M. Shkir, M.T. Khan, A. Khan, A.M. El-Toni, A. Aldalbahi, and S. AlFaify, Mater. Sci. Semicond. Proc. 96, 16 (2019).

    CAS  Google Scholar 

  25. P. Wellenius, A. Suresh, J.V. Foreman, H.O. Everitt, and J.F. Muth, Mater. Sci. Eng. B 146, 252 (2008).

    CAS  Google Scholar 

  26. P. Gollakota, A. Dhawan, P. Wellenius, L.M. Lunardi, J.F. Muth, Y.N. Saripalli, H.Y. Peng, and H.O. Everitt, Appl. Phys. Lett. 88, 221906 (2006).

    Google Scholar 

  27. J. Hao, Z. Lou, I. Renaud, and M. Cocivera, Thin Solid Films 467, 182 (2004).

    CAS  Google Scholar 

  28. Y. Masuda, M. Yamagishi, and K. Koumoto, Chem. Mater. 19, 1002 (2007).

    CAS  Google Scholar 

  29. A. Garcia-Murillo, C. LeLuyer, C. Garapon, C. Dujardin, E. Bernstein, C. Pedrini, and J. Mugnier, Opt. Mater. 19, 161 (2002).

    CAS  Google Scholar 

  30. J. Domaradzki, D. Kaczmarek, A. Borkowska, D. Schmeisser, S. Mueller, R. Wasielewski, A. Ciszewski, and D. Wojcieszak, Vacuum 82, 1007 (2008).

    CAS  Google Scholar 

  31. K.M. Gadave, S.A. Jodgudri, and C.D. Lokhande, Thin Solid Films 245, 7 (1994).

    CAS  Google Scholar 

  32. X. Zheng, F. Gao, F. Ji, H. Wu, J. Zhang, X. Hu, and Y. Xiang, Mater. Lett. 167, 128 (2016).

    CAS  Google Scholar 

  33. S. Ravishankar, A.R. Balu, and V.S. Nagarethinam, J. Electron. Mater. 47, 1271 (2018).

    CAS  Google Scholar 

  34. M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, and S. AlFaify, Chin. J. Phys. 63, 51 (2020).

    CAS  Google Scholar 

  35. M. Shkir, I.M. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, and A. Khan, Ceram. Int. 46, 4652 (2019).

    Google Scholar 

  36. A. Singh, V. Viswanath, and V. Janu, J. Lumin. 129, 874 (2009).

    CAS  Google Scholar 

  37. T. Rattana, S. Suwanboon, P. Amornpitoksuk, A. Haidoux, and P. Limsuwan, J. Alloys Comp. 480, 603 (2009).

    CAS  Google Scholar 

  38. M. Ravikumar, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, and S. AlFaify, J. Sol-Gel. Sci. Technol. 85, 31 (2018).

    CAS  Google Scholar 

  39. M. Shkir and S. AlFaify, J. Mater. Res. 34, 2765 (2019).

    CAS  Google Scholar 

  40. K.D.A. Kumar, V. Ganesh, S. Valanarasu, M. Shkir, I. Kulandaisamy, A. Kathalingam, and S. AlFaify, Mater. Chem. Phys. 212, 167 (2018).

    Google Scholar 

  41. R. Yousefi, M. Cheraghizade, F. Jamali-Sheini, W.J. Basirun, and N.M. Huang, Curr. Appl. Phys. 14, 1031 (2014).

    Google Scholar 

  42. F. Gode, O. Baglayan, and E. Guneri, Chalcog. Lett. 12, 519 (2015).

    CAS  Google Scholar 

  43. Y. Bencherif, A. Boukra, A. Zaoui, and M. Ferhat, Infrared Phys. Technol. 54, 39 (2011).

    CAS  Google Scholar 

  44. S.V. Bhatt, M. Deshpande, B.H. Soni, N. Garg and S.H. Chaki: Chemical bath deposition of lead sulphide (PbS) thin film and their characterization, in Solid State Phenomena, (vol. 209, Trans Tech Publ, City, 2014), p. 111

  45. J. Rivera-Nieblas, J. Alvarado-Rivera, M. Acosta-Enríquez, R. Ochoa-Landin, F. Espinoza-Beltrán, A. Apolinar-Iribe, M. Flores-Acosta, A. De Leon, and S. Castillo, Chalcogenide Lett. 10, 349 (2013).

    CAS  Google Scholar 

  46. R. Sherwin, R.J.H. Clark, R. Lauck, and M. Cardona, Sol. State Commun. 134, 565 (2005).

    CAS  Google Scholar 

  47. E. Sarica and V. Bilgin, Mater. Sci. Semicond. Proc. 68, 288 (2017).

    CAS  Google Scholar 

  48. A.M.S. Arulanantham, S. Valanarasu, K. Jeyadheepan, and A. Kathalingam, Thin Solid Films 666, 85 (2018).

    CAS  Google Scholar 

  49. E. Yücel and Y. Yücel, Ceram. Int. 43, 407 (2017).

    Google Scholar 

  50. C. Rajashree, A. Balu, and V. Nagarethinam, J. Mater. Sci.: Mater. Electron. 27, 7876 (2016).

    CAS  Google Scholar 

  51. G. Singh Lotey, Z. Jindal, V. Singhi, and N.K. Verma, Mater. Sci. Semicond. Proc. 16, 2044 (2013).

    CAS  Google Scholar 

  52. R. Palomino-Merino, O. Portillo-Moreno, L. Chaltel-Lima, R.G. Pérez, M. de Icaza-Herrera, and V. Castaño, J. Nanomater. 2013, 45 (2013).

    Google Scholar 

  53. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Stat. Sol. 15, 627 (1966).

    CAS  Google Scholar 

  54. T. Moss, G.J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (London: Butterworth-Heinemann, 1959).

    Google Scholar 

  55. M. Arif, M. Shkir, S. AlFaify, A. Sanger, P.M. Vilarinho, and A. Singh, Opt. Laser Technol. 112, 539 (2019).

    CAS  Google Scholar 

  56. Y. Gülen, Metall. Mater. Trans. A 46, 4698 (2015).

    Google Scholar 

  57. M. Shkir, M.T. Khan, and S. AlFaify, Appl. Nanosci. 9, 1417 (2019).

    CAS  Google Scholar 

  58. J. Kim, E. Oh, R. Xiao, S. Ritter, Y. Yang, D. Yu, J. HeeIm, S. HyukKim, W. JunChoi, and J.-G. Park, Nanotechnology 28, 475706 (2017).

    Google Scholar 

  59. A. De Iacovo, C. Venettacci, L. Colace, L. Scopa, and S. Foglia, Sci. Rep. 6, 1 (2016).

    Google Scholar 

  60. Y. Wei, Z. Ren, A. Zhang, P. Mao, H. Li, X. Zhong, W. Li, S. Yang, and J. Wang, Adv. Funct. Mater. 28, 1706690 (2018).

    Google Scholar 

  61. H. Tang, J. Zhong, W. Chen, K. Shi, G. Mei, Y. Zhang, Z. Wen, P. Müller-Buschbaum, D. Wu, K. Wang, and X.W. Sun, ACS Appl. Nano Mater. 2, 6135 (2019).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Research Groups Program under Grant No. R.G.P.1/207/41. A.K. acknowledges the Researchers Supporting Project (RSP-2019/127), King Saud University, Riyadh, Saudi Arabia for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ramaswamy, Mohd Shkir or Aslam Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulraj, K., Ramaswamy, S., Saravanakumar, S. et al. Comprehensive Study on Nebulizer-Spray-Pyrolyzed Eu-Doped PbS Thin Films for Optoelectronic Applications. J. Electron. Mater. 49, 5439–5448 (2020). https://doi.org/10.1007/s11664-020-08267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08267-8

Keywords

Navigation