Skip to main content
Log in

4O10Cd Clustering in ZnBVI-Rich CdxZn1−xOyB VI1−y (BVI = S, Se, Te) Highly Lattice-Mismatched Alloys

  • Topical Collection: 18th Conference on Defects (DRIP XVIII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Clustering of highly lattice-mismatched semiconductor alloys has attracted considerable interest recently. However, strong internal strains and cluster variety are the main disadvantages of such alloys. Zinc blende ZnBVI-rich CdxZn1−xOyB VI1−y (BVI = S, Se, Te) with 4O10Cd identical clusters are proposed to resolve these problems. The decrease in the internal strains is a cause of the cluster formation in ZnS- and ZnSe-rich alloys. The favorable CdO and ZnTe bonding is an additional reason for the cluster occurrence in ZnTe-rich alloys. The cohesive energies of CdSe and ZnSe, stiffness coefficients, bond stretching and bond bending elastic constants of CdSe are calculated. The majority of Cd and oxygen atoms should be in 4O10Cd clusters up to 800°C if the ZnS- and ZnSe-rich alloy contents are, respectively, y ≥ 2.5 × 10−4 and y > 3 × 10−4, and x ≈ 2.5y. The obtained results demonstrate that CdxZn1−xOyB VI1−y materials are promising semiconductors with significantly reduced internal strains and identical polyatomic clusters containing oxygen tetrahedrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chena, Y. Dinga, L. Lia, W. Zhanga, M. Lia, G. Changa, Y. Lua, P.J. Klarb, and Y. He, J. Alloys Compd. 773, 443 (2019).

    Article  Google Scholar 

  2. M. Welna and M. Baranowski, J. Appl. Phys. 125, 205702 (2019).

    Article  Google Scholar 

  3. T. Tanaka, K. Matsuo, K. Saito, Q. Guo, T. Tayagaki, K.M. Yu, and W. Walukiewicz, J. Appl. Phys. 125, 243109 (2019).

    Article  Google Scholar 

  4. G. Éthier-Majcher, P. St-Jean, and S. Francoeur, Phys. Rev. B 98, 115431 (2018).

    Article  Google Scholar 

  5. T. Wilson, N.P. Hylton, Y. Harada, P. Pearce, D. Alonso-Álvarez, A. Mellor, R.D. Richards, J.P.R. David, and N.J. Ekins-Daukes, Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  6. D.G. Thomas, J.J. Hopfield, and J. Frosch, Phys. Rev. Lett. 15, 857 (1965).

    Article  Google Scholar 

  7. V.A. Elyukhin, Adv. Mater. Res. 740, 483 (2013).

    Article  Google Scholar 

  8. V.A. Elyukhin, Physica E 43, 1874 (2011).

    Article  CAS  Google Scholar 

  9. K. Müller, M. Schowalter, A. Rosenauer, D. Hu, D.M. Schaadt, M. Hetterich, P. Gilet, and O. Rubel, Phys. Rev. B 84, 045316 (2011).

    Article  Google Scholar 

  10. M. Milanova, V. Donchev, K.L. Kostov, D. Alonso-Álvarez, E. Valcheva, K. Kirilov, I. Asenova, I.G. Ivanov, S. Georgiev, and N. Ekins-Daukes, Semicond. Sci. Technol. 32, 085005 (2017).

    Article  Google Scholar 

  11. M.-H. Lin and C.-H. Ho, ACS Omega 2, 4514 (2017).

    Article  CAS  Google Scholar 

  12. J.S. McCloy and B.G. Potter, Opt. Mater. Express 3, 1273 (2013).

    Article  Google Scholar 

  13. M. Welna, Ł. Janicki, W.M. Linhart, T. Tanaka, K.M. Yu, R. Kudrawiec, and W. Walukiewicz, J. Appl. Phys. 126, 083106 (2019).

    Article  Google Scholar 

  14. S.F. Díaz Albarrán, V.A. Elyukhin, and P. Rodriguez Peralta, Phys. B 407, 2846 (2012).

    Article  Google Scholar 

  15. Landolt-Börnstein, Numerical data and functional relations in science and technology, New Series, vol. 17d, eds. By M. Schulz and H. Weiss (Springer, Berlin, 1984), p. 146.

  16. R.T. Sanderson, Chemical Bonds and Bond Energy, 1st ed. (New York: Academic Press, 1971), p. 57.

    Google Scholar 

  17. R.T. Sanderson, Chemical Bonds and Bond Energy, 1st ed. (New York: Academic Press, 1971), p. 15.

    Google Scholar 

  18. R.M. Martin, Phys. Rev. B 6, 4546 (1972).

    Article  CAS  Google Scholar 

  19. R.T. Sanderson, Chemical Bonds and Bond Energy, 1st ed. (New York: Academic Press, 1971), p. 137.

    Google Scholar 

  20. R.M. Martin, Phys. Rev. B 1, 4005 (1970).

    Article  Google Scholar 

  21. J.M. Baranowski, J. Phys. C: Solid State Phys. 17, 6287 (1984).

    Article  CAS  Google Scholar 

  22. N. Samarth, H. Luo, J.K. Furdyna, S.B. Qadri, Y.R. Lee, A.K. Ramdas, and N. Otsuka, Appl. Phys. Lett. 54, 2680 (1989).

    Article  CAS  Google Scholar 

  23. Y.-C. Lin, M.-J. Tasi, W.-C. Chou, W.-H. Chang, W.-K. Chen, T. Tanaka, Q. Guo, and M. Nisio, Appl. Phys. Lett. 103, 261905 (2013).

    Article  Google Scholar 

  24. V.A. Elyukhin, J. Appl. Phys. 123, 161564 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnologia, México under Research Grant CB-154928.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav A. Elyukhin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyukhin, V.A. 4O10Cd Clustering in ZnBVI-Rich CdxZn1−xOyB VI1−y (BVI = S, Se, Te) Highly Lattice-Mismatched Alloys. J. Electron. Mater. 49, 5167–5172 (2020). https://doi.org/10.1007/s11664-020-08302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08302-8

Keywords

Navigation