Skip to main content

Advertisement

Log in

Differential transcriptome analysis in HPV-positive and HPV-negative cervical cancer cells through CRISPR knockout of miR-214

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In this study we have investigated the effects of a tumour suppressor microRNA, miR-214, on gene expression in HPV-positive (CaSki) and HPV-negative cervical cancer cells (C33A) by RNA sequencing using next generation sequencing. The HPV-positive and HPV-negative cervical cancer cells were either miR-214-knocked-out or miR-214-overexpressed. Gene expression analysis showed that a total of 904 genes were upregulated and 365 genes were downregulated between HPV-positive and HPV-negative cervical cancer cells with a fold change of ±2. Furthermore, 11 differentially expressed and relevant genes (TNFAIP3, RAB25, MET, CYP1B1, NDRG1, CD24, LOXL2, CD44, PMS2, LATS1 and MDM1) which showed a fold change of ±5 were selected to confirm by real-time PCR. This study represents the first report of miR-214 on global gene expression in the context of HPV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

3ʹ-UTR:

3ʹ-untranslated region

ATCC:

American Type Culture Collection

CC:

cervical cancer

CIN:

cervical intraepithelial neoplasia

CRISPR:

clustered regularly interspaced short palindromic repeats

DAVID:

the database for annotation, visualization and integrated discovery

DEG:

differentially expressed genes

DMEM:

Dulbecco’s Modified Eagle Medium

FBS:

fetal bovine serum

GO:

gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

miR:

microRNA

NGS:

Next Generation sequencing

NIAID:

National Institute of Allergy and Infectious Diseases

qRT-PCR:

quantitative real-time PCR

RIN:

RNA integrity number

RNA-seq:

RNA-sequencing

sgRNA:

single guide RNA

SRA:

sequence read archive

References

  • Abba ML, Patil N, Leupold JH, Moniuszko M, Utikal J, Niklinski J and Allgayer H 2017 MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett. 387 84–94

    Article  CAS  Google Scholar 

  • Agorastos T, Chatzistamatiou K, Katsamagkas T, Koliopoulos G, Daponte A, Constantinidis T, and Constantinidis TC 2015 Primary screening for cervical cancer based on high-risk human papillomavirus (HPV) detection and HPV 16 and HPV 18 genotyping, in comparison to cytology. PLoS ONE 10 e0119755

    Article  Google Scholar 

  • Berdasco M and Esteller M 2017 Crosstalk between non-coding RNAs and the epigenome in development. Chromatin Regul. Dyn. https://doi.org/10.1016/B978-0-12-803395-1.00009-5

    Article  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A 2018 Global cancer statistics GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 68 394–424

    Article  Google Scholar 

  • Byron SA, Keuren-Jensen KR Van, Engelthaler DM, Carpten JD and Craig DW 2016 Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet. 17 257–271

    Article  CAS  Google Scholar 

  • Chang I, Mitsui Y, Kim SK, et al. 2017 Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 activation. Oncotarget 8 39087–39100

    Article  Google Scholar 

  • Deng J, Zhang W, Liu S, An H, Tan L and Ma L 2017 LATS1 suppresses proliferation and invasion of cervical cancer. Mol. Med. Rep. 15 1654–1660

    Article  CAS  Google Scholar 

  • Du B, Liu M, Li C, Geng X, Zhang X, Ning D and Liu M 2019 The potential role of TNFAIP3 in malignant transformation of gastric carcinoma. Pathol. Res. Pract. 215 152471

    Article  CAS  Google Scholar 

  • Frediani JN and Fabbri M 2016 Essential role of miRNAs in orchestrating the biology of the tumor microenvironment. Mol. Cancer 15 42

    Article  Google Scholar 

  • Ghittoni R, Accardi R, Hasan U, Gheit T, Sylla B, and Tommasino M 2010 The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40 1–13

    Article  CAS  Google Scholar 

  • Goodman A 2015 HPV testing as a screen for cervical cancer. BMJ 350 h2372

    Article  Google Scholar 

  • Hopman AHN and Ramaekers FCS 2017 Development of the uterine cervix and its implications for the pathogenesis of cervical cancer; In Pathology of the Cervix. Essentials of Diagnostic Gynecological Pathology (volume 3) (eds) Herrington C (Springer, Cham) pp 1–20

  • Imam N 2016 Computational analysis of human cancer related RNA-Seq data: A review. J. Appl. Comput. 1 30–37

    Google Scholar 

  • Jaskowiak PA, Costa IG and Campello RJGB 2018 Clustering of RNA-Seq samples: Comparison study on cancer data. Methods 132 42–49

    Article  CAS  Google Scholar 

  • Jeong H, Lim KM, Kim KH, et al. 2019 Loss of Rab25 promotes the development of skin squamous cell carcinoma through the dysregulation of integrin trafficking. J. Pathol. 249 227–240

    Article  CAS  Google Scholar 

  • Jia J, Wang Z, Cai J and Zhang Y 2016 PMS2 expression in epithelial ovarian cancer is posttranslationally regulated by Akt and essential for platinum-induced apoptosis. Tumor Biol. 37 3059–3069

    Article  CAS  Google Scholar 

  • Kawai S, Fujii T, Kukimoto I, et al. 2018 Identification of miRNAs in cervical mucus as a novel diagnostic marker for cervical neoplasia. Sci. Rep. 8 7070

    Article  Google Scholar 

  • Kim J and Bang H 2016 Three common misuses of P-values. Dental Hypotheses 7 73

    Article  Google Scholar 

  • Li H, Zhang H, Lu G, Li Q, Gu J, Song Y, Gao S and Ding Y 2016 Mechanism analysis of colorectal cancer according to the microRNA expression profile. Oncol. Lett. 12 2329–2336

    Article  CAS  Google Scholar 

  • Mao Y, Shen J, Lu Y, et al. 2017 RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer. Oncotarget 8 42537–42547

    Article  Google Scholar 

  • Mark D Van de, Kong D, Loncarek J and Stearns T 2015 MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Mol. Biol. Cell 26 3788–802

    Article  Google Scholar 

  • Mi L, Zhu F, Yang X, et al. 2017 The metastatic suppressor NDRG1 inhibits EMT, migration and invasion through interaction and promotion of caveolin-1 ubiquitylation in human colorectal cancer cells. Oncogene 36 4323–4335

    Article  CAS  Google Scholar 

  • Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C and Kobayashi H 2017 Syngeneic mouse models of oral cancer are effectively targeted by anti-CD44-based NIR-PIT. Mol. Cancer Res. 15 1667–1677

    Article  CAS  Google Scholar 

  • PEI Z, Zhu G, Huo X, et al. 2016 CD24 promotes the proliferation and inhibits the apoptosis of cervical cancer cells in vitro. Oncol. Rep. 35 1593–1601

    Article  CAS  Google Scholar 

  • Penna E, Orso F and Taverna D 2015 miR-214 as a key hub that controls cancer networks: small player, multiple functions. J. Invest. Dermatol. 135 960–9

    Article  CAS  Google Scholar 

  • Refaat T, Donnelly ED, Sachdev S, et al. 2017 c-Met overexpression in cervical cancer, a prognostic factor and a potential molecular therapeutic target. Am. J. Clin. Oncol. 40 590–597

    Article  CAS  Google Scholar 

  • Rupaimoole R and Slack FJ 2017 MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16 203–222

    Article  CAS  Google Scholar 

  • Salvador F, Martin A, López-Menéndez C, et al. 2017 Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res. 77 5846–5859

    Article  CAS  Google Scholar 

  • Santos JMO, Peixoto da Silva S, Costa NR, Gil da Costa RM and Medeiros R 2018 The role of MicroRNAs in the metastatic process of high-risk HPV-induced cancers. Cancers 10 493

    Article  CAS  Google Scholar 

  • Sen P, Ganguly P and Ganguly N 2018 Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol. Lett. 15 11–22

    Article  Google Scholar 

  • Sochor M, Basova P, Pesta M, Dusilkova N, Bartos J, Burda P, Pospisil V and Stopka T 2014 Oncogenic MicroRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer 14 448

    Article  Google Scholar 

  • Tomasetti M, Amati M, Santarelli L and Neuzil J 2016 MicroRNA in metabolic re-programming and their role in tumorigenesis. Int. J. Mol. Sci. 17 754

    Article  Google Scholar 

  • Uhlen M, Zhang C, Lee S, et al. 2017 A pathology atlas of the human cancer transcriptome. Science 357 eaan2507

Download references

Acknowledgements

The funding from SERB, India, is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Ganguly.

Additional information

Communicated by Saumitra Das.

Editorial Responsibility: Saumitra Das

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P., Ganguly, P., Kulkarni, K.K. et al. Differential transcriptome analysis in HPV-positive and HPV-negative cervical cancer cells through CRISPR knockout of miR-214. J Biosci 45, 104 (2020). https://doi.org/10.1007/s12038-020-00075-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00075-w

Keywords

Navigation