Skip to main content
Log in

Hydrodynamic Perception Using an Artificial Lateral Line Device with an Optimized Constriction Canal

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

To perform flow-related behaviors in darkness, blind cavefish have evolved Lateral Line Systems (LLSs) with constriction canals to enhance hydrodynamic sensing capabilities. Mimicking the design principles, we developed a Canal-type Artificial Lateral Line (CALL) device featuring a biomimetic constriction canal. The hydrodynamic characterization results revealed that the sensitivity of the canal LLS increases with the decrease in the width (from 1 mm to 0.6 mm) and length (from 3 mm to 1 mm) of the constriction canal, which is in accordance with the modeling results of canal mechanics. The CALL device was characterized in Kármán vortex streets generated by a cylinder in a laminar flow. The CALL device was able to identify the diameter of the cylinder, with a mean identification error of approximately 2.5%. It also demonstrated the identification ability of wake width using the CALL device, indicating the potential for application in hydrodynamic perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pitcher T J, Partridge B L, Wardle C S. A blind fish can school. Science, 1976, 194, 963–965.

    Article  Google Scholar 

  2. Middlemiss K L, Cook D G, Jerrett A R, Davison W. Morphology and hydro-sensory role of superficial neuromasts in schooling behaviour of yellow-eyed mullet (Aldrichetta forsteri). Journal of Comparative Physiology A, 2017, 203, 807–817.

    Article  Google Scholar 

  3. Schwalbe M A B, Bassett D K, Webb J F. Feeding in the dark: Lateral line mediated feeding behavior in the peacock cichlid, Aulonocara stuartgranti. Journal of Experimental Biology, 2012, 215, 2060–2071.

    Article  Google Scholar 

  4. Lloyda E, Oliveb C, Stahla B A, Jaggard J B, Amaral P, Duboué E R, Keene A C. Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish. Developmental Biology, 2018, 441, 328–337.

    Article  Google Scholar 

  5. Montgomery J C, Baker C F, Carton A G. The lateral line can mediate rheotaxis in fish. Nature, 1997, 389, 960–963.

    Article  Google Scholar 

  6. Oteiza P, Odstrcil I, Lauder G, Portugues R, Engert F. A novel mechanism for mechanosen-sory-based rheotaxis in larval zebrafish. Nature, 2017, 547, 445–448.

    Article  Google Scholar 

  7. Jiang Y G, Ma Z Q, Zhang D Y. Flow field perception based on the fish lateral line system. Bioinspiration & Biomimetics, 2019, 14, 041001.

    Article  Google Scholar 

  8. Mogdans J. Sensory ecology of the fish lateral-line system: Morphological and physiological adaptations for the perception of hydrodynamic stimuli. Journal of Fish Biology, 2019, 95, 53–72.

    Google Scholar 

  9. Coombs S, Görner P, Münz H. The Mechanosensory Lateral Line: Neurobiology and Evolution. Springer-Verlag, New York, USA, 1989.

    Book  Google Scholar 

  10. Webb J F. Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behavior and Evolution, 1989, 33, 34–53.

    Article  Google Scholar 

  11. Coombs S, van Netten S M. The hydrodynamics and structural mechanics of the lateral line system. Fish Physiology, 2005, 23, 103–139.

    Article  Google Scholar 

  12. Engelmann J, Hanke W, Mogdans J, Bleckmann H. Hydrodynamic stimuli and the fish lateral line. Nature, 2000, 408, 51–52.

    Article  Google Scholar 

  13. Bleckmann H, Breithaupt T, Blickhan R, Tautz J. The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. Journal of Comparative Physiology A, 1991, 168, 749–757.

    Google Scholar 

  14. Dehnhardt G, Mauck B, Hanke W, Bleckmann H. Hydrodynamic trail-following in Harbor seals (Phoca vitulina). Science, 2001, 293, 102–104.

    Article  Google Scholar 

  15. Pullman K, Grasso F W, Breithaupt T. Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7371–7374.

    Article  Google Scholar 

  16. Pohlmann K, Atema J, Breithaupt T. The importance of the lateral line in nocturnal predation of piscivorous catfish. Journal of Experimental Biology, 2004, 207, 2971–2978.

    Article  Google Scholar 

  17. Venturelli R, Akanyeti O, Visentin F, Ježov J, Chambers L D, Toming G, Brown J, Kruusmaa M, Megill W M, Fiorini P. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows. Bioinspiration & Biomimetics, 2012, 7, 036004.

    Article  Google Scholar 

  18. Liu G J, Liu S K, Wang S R, Hao H H, Wang M M. Research on artificial lateral line perception of flow field based on pressure difference matrix. Journal of Bionic Engineering, 2019, 16, 1007–1018.

    Article  Google Scholar 

  19. Yanagitsuru Y R, Akanyeti O, Liao J C. Head width influences flow sensing by the lateral line canal system. Journal of Experimental Biology, 2018, 221, 180877.

    Article  Google Scholar 

  20. Klein A, Bleckmann H. Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. Beilstein Journal of Nanotechnology, 2011, 2, 276–283.

    Article  Google Scholar 

  21. Kaldenbach H, Klein A, Bleckmann H. Form-function relationship in artificial lateral lines. Bioinspiration & Biomimetics, 2019, 14, 026001.

    Article  Google Scholar 

  22. Jiang Y G, Fu J C, Zhang D Y, Zhao Y H. Investigation on the lateral line systems of two cave fish: Sinocyclocheilus macrophthalmus and S. microphthalmus (cypriniformes: cyprinidae). Journal of Bionic Engineering, 2016, 13, 108–114.

    Article  Google Scholar 

  23. Ma Z Q, Herzog H, Jiang Y G, Zhao Y H, Zhang D Y. Exquisite structure of the lateral line system in eyeless cavefish Sinocyclocheilus tianlinensis contrast to eyed Sinocyclocheilus macrophthal-mus (Cypriniformes: Cyprinidae). Integrative Zoology, 2020, DOI: https://doi.org/10.1111/1749-4877.12430.

  24. Denton E J, Gray J A B. Mechanical factors in the excitation of the lateral line of fishes. In: Atema J, Fay R R, Popper A N and Tavolga W N eds., Sensory Biology of Aquatic Animals, Springer, New York, USA, 1988, 595–617.

    Chapter  Google Scholar 

  25. Han Z W, Liu L P, Wang K J, Song H L, Chen D B, Wang Z, Niu S C, Zhang J Q, Ren L Q. Artificial hair-like sensors inspired from nature: A review. Journal of Bionic Engineering, 2018, 15, 409–434.

    Article  Google Scholar 

  26. Jiang Y G, Ma Z Q, Fu J C, Zhang D Y. Development of a flexible artificial lateral line canal system for hydrodynamic pressure detection. Sensors, 2017, 17, 1220.

    Article  Google Scholar 

  27. Herzog H, Klein A, Bleckmann H, Holik P, Schmitz S, Siebke G, Tätzner S, Lacher M, Steltenkamp S. µ-biomimetic flow sensors-introducing light-guided PDMS structures into MEMS. Bioinspiration & Biomimetics, 2015, 10, 036001.

    Article  Google Scholar 

  28. Ma Z Q, Jiang Y G, Wu P, Xu Y H, Hu X H, Gong Z, Zhang D Y. Constriction canal assisted artificial lateral line system for enhanced hydrodynamic pressure sensing. Bioinspiration & Biomimetics, 2019, 14, 066004.

    Article  Google Scholar 

  29. Apaçoğlu B, Aradağ S. CFD Analysis of uncontrolled and controlled turbulent flow over a circular cylinder. 6th International Advanced Technologies Symposium, Elazığ, Turkey, 2011.

  30. Mureithi N W, Xu X, Baranyi L, Nakamura T, Kaneko S. Dynamics of the forced Karman wake: Comparison of 2D and 3D models. Proceedings of the ASME Pressure Vessels & Piping Conference, California, USA, 2014.

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Nos. 51575027 and 51975030) and the Academic Excellence Foundation of BUAA for PhD Students. The authors would like to thank Prof. Peng Wu from Soochow University for kind assistance in CFD simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Jiang, Y., Dong, Z. et al. Hydrodynamic Perception Using an Artificial Lateral Line Device with an Optimized Constriction Canal. J Bionic Eng 17, 909–919 (2020). https://doi.org/10.1007/s42235-020-0084-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-020-0084-6

Keywords

Navigation