Skip to main content
Log in

Determining the time needed for workers to acclimatize to hypoxia

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

This study aimed to determine the influence of intermittent hypoxia and the days required for a worker to be acclimatized in high-altitude countries. We conducted an experimental study. Ten nonsmoking male students were randomly recruited from King Saud University. Fourteen days of exposure to intermittent normobaric hypoxia (15%) was the independent variable. Heart rate (HR), respiratory frequency (RF), minute ventilation (VE), respiratory exchange ratio (RER), tidal volume (VT), oxygen uptake (VO2),VO2/kg, VO2/HR, VE/VO2, and VE/VCO2 were the dependent variables. Our results showed that 12 days of exposure to intermittent hypoxia were sufficient for workers to acclimatize to hypoxia based on their respiratory responses (i.e., HR, RF, VE). This type of acclimatization session is very important for workers who are suddenly required to work in such an environment, because prolonged exposure to high altitude without acclimatization leads to cell death due to a lack of oxygen, and this, in turn, puts workers’ lives at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amann M, Calbet JA (2008) Convective oxygen transport and fatigue. J Appl Physiol 104(3):861–870

    Google Scholar 

  • Barry BK, Enoka RM (2007) The neurobiology of muscle fatigue: 15 years later. Integr Comp Biol 47(4):465–473

    Google Scholar 

  • Beidleman BA, Muza SR, Fulco CS, Cymerman A, Sawka MN, Lewis SF, Skrinar GS (2008) Seven intermittent exposures to altitude improves exercise performance at 4300 m. Med Sci Sports Exerc 40(1):141–148

    Google Scholar 

  • Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P (2002) Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22(4):393–403

    CAS  Google Scholar 

  • Burtscher M, Faulhaber M, Flatz M, Likar R, Nachbauer W (2006) Effects of short-term acclimatization to altitude (3200 m) on aerobic and anaerobic exercise performance. Int J Sports Med 27(08):629–635

    CAS  Google Scholar 

  • Burtscher M, Brandstätter E, Gatterer H (2008) Preacclimatization in simulated altitudes. Sleep Breath 12(2):109–114

    CAS  Google Scholar 

  • Burtscher M, Niedermeier M, Burtscher J, Pesta D, Suchy J, Strasser B (2018) Preparation for endurance competitions at altitude: physiological, psychological, dietary and coaching aspects. A narrative review. Front Physiol 9:1504

    Google Scholar 

  • Canouï-Poitrine F, Veerabudun K, Larmignat P, Letournel M, Bastuji-Garin S, Richalet JP (2014) Risk prediction score for severe high altitude illness: a cohort study. PLoS One 9(7):e100642

    Google Scholar 

  • Dale EA, Ben Mabrouk F, Mitchell GS (2014) Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology 29(1):39–48

    CAS  Google Scholar 

  • Fulco CS, Kambis KW, Friedlander AL, Rock PB, Muza SR, Cymerman A (2005) Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4,300-m altitude. J Appl Physiol 99(3):867–876

    CAS  Google Scholar 

  • Gangwar A, Sharma M, Singh K, Patyal A, Bhaumik G, Bhargava K, Sethy NK (2019) Intermittent normobaric hypoxia facilitates high altitude acclimatization by curtailing hypoxia-induced inflammation and dyslipidemia. Pflügers Arch Eur J Physiol 471(7):949–959

    CAS  Google Scholar 

  • Gangwar A, Paul S, Ahmad Y, Bhargava K (2020) Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci Rep 10(1):1–18

    Google Scholar 

  • Gao YX, Li P, Jiang CH, Liu C, Chen Y, Chen L, Ruan HZ, Gao YQ (2015) Psychological and cognitive impairment of long-term migrators to high altitudes and the relationship to physiological and biochemical changes. Eur J Neurol 22(10):1363–1369

    Google Scholar 

  • Garvican-Lewis LA, Sharpe K, Gore CJ (2016) Time for a new metric for hypoxic dose? J Appl Physiol 121(1):352–355

    Google Scholar 

  • Gore CJ, Hahn AG, Aughey RJ, Martin DT, Ashenden MJ, Clark SA et al (2001) Live high: train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand 173(3):275–286

    CAS  Google Scholar 

  • Goryacheva AV, Kruglov SV, Pshennikova MG, Smirin BV, Malyshev IY, Barskov IV, Viktorov IV, Downey HF, Manukhina EB (2010) Adaptation to intermittent hypoxia restricts nitric oxide overproduction and prevents beta-amyloid toxicity in rat brain. Nitric Oxide 23(4):289–299

    CAS  Google Scholar 

  • Hinckson EA, Hopkins WG (2005) Changes in running endurance performance following intermittent altitude exposure simulated with tents. Eur J Sport Sci 5(1):15–24

    Google Scholar 

  • Hobler KE, Carey LC (1973) Effect of acute progressive hypoxemia on cardiac output and plasma excess lactate. Ann Surg 177(2):199–202

    CAS  Google Scholar 

  • Kang MY, Sapoval B (2016) Prediction of maximal oxygen uptake at high altitude. Eur Respir J 48(60):PA1583

    Google Scholar 

  • Katayama K, Sato K, Matsuo H, Ishida K, Iwasaki KI, Miyamura M (2004) Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur J Appl Physiol 92(1-2):75–83

    Google Scholar 

  • Khalaf TM, Ramadan MZ, Al-Ashaikh RA (2017) How many days are required for workers to acclimatize to heat? Work 56(2):285–289

    Google Scholar 

  • Latshang TD, Turk AJ, Hess T, Schoch OD, Bosch MM, Barthelmes D, Merz TM, Hefti U, Hefti JP, Maggiorini M, Bloch KE (2013) Acclimatization improves submaximal exercise economy at 5533 m. Scand J Med Sci Sports 23(4):458–467

    CAS  Google Scholar 

  • Levine BD, Stray-Gundersen J (1992) A practical approach to altitude training. Int J Sports Med 13(S 1):S209–S212

    Google Scholar 

  • Lundby C, Calbet JA, van Hall G, Saltin B, Sander M (2004) Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives. Am J Phys Regul Integr Comp Phys 287(5):R1202–R1208

    CAS  Google Scholar 

  • Majumdar D (2018) Performance enhancement through physical activity at high altitudes. In: Management of high altitude pathophysiology. Academic Press, pp 279–306

  • Mallet RT, Ryou MG, Manukhina EB, Downey HF (2008) Intermittent hypoxia conditioning of canine myocardium: robust protection against ischemia-reperfusion injury. Adapt Biol Med 5:59–78

    CAS  Google Scholar 

  • Mallet RT, Ryou MG, Manukhina EB, Downey HF (2009) Beta-adrenergic signaling and ROS: pivotal roles in intermittent, normobaric hypoxia-induced cardioprotection. Intermittent hypoxia: from molecular mechanisms to clinical applications. Nova Science Publishers, New York, pp 151–174

    Google Scholar 

  • Manukhina EB, Lapshin AV, Meerson FZ (1994) Adaptation to intermittent hypoxia prevents disorders of endothelium-dependent relaxation and fall of blood pressure in experimental myocardial infarction. Hypoxia Med J 1:15–18

    Google Scholar 

  • Merz TM, Bosch MM, Barthelmes D, Pichler J, Hefti U, Schmitt KU, Bloch KE, Schoch OD, Hess T, Turk AJ, Schwarz U (2013) Cognitive performance in high-altitude climbers: a comparative study of saccadic eye movements and neuropsychological tests. Eur J Appl Physiol 113(8):2025–2037

    Google Scholar 

  • Naeije R (2010) Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 52(6):456–466

    Google Scholar 

  • Nagasaka T, Satake T (1969) Changes of pulmonary and cardiovascular functions in subjects confined intermittently in a low-pressure chamber for 3 consecutive days. Fed Proc 28(3):1312

    CAS  Google Scholar 

  • Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Phys Regul Integr Comp Phys 307(10):R1181–R1197

    CAS  Google Scholar 

  • Phillips JB, Hørning D, Funke ME (2015) Cognitive and perceptual deficits of normobaric hypoxia and the time course to performance recovery. Aerosp Med Hum Perform 86(4):357–365

    Google Scholar 

  • Płoszczyca K, Langfort J, Czuba M (2018) The effects of altitude training on erythropoietic response and hematological variables in adult athletes: a narrative review. Front Physiol 9:375

    Google Scholar 

  • Porcelli S, Marzorati M, Healey B, Terraneo L, Vezzoli A, Della Bella S et al (2017) Lack of acclimatization to chronic hypoxia in humans in the Antarctica. Sci Rep 7(1):18090

    Google Scholar 

  • Pugh LG, Gill MB, Lahiri S, Milledge JS, Ward MP, West JB (1964) Muscular exercise at great altitudes. J Appl Physiol 19(3):431–440

    CAS  Google Scholar 

  • Ramadan MZ (1988) Effects of task and environment-related variables on individuals’ lifting capabilities while wearing protective clothing. PhD Thesis, Industrial Engineering Department, West Virginia University

  • Ricart A, Casas H, Casas M, Pagés T, Palacios L, Rama R, Rodríguez FA, Viscor G, Ventura JL (2000) Acclimatization near home? Early respiratory changes after short-term intermittent exposure to simulated altitude. Wilderness Environ Med 11(2):84–88

    CAS  Google Scholar 

  • Richalet JP, Lhuissier FJ (2015) Aging, tolerance to high altitude, and cardiorespiratory response to hypoxia. High Alt Med Biol 16(2):117–124

    Google Scholar 

  • Roach RC, Hackett PH, Oelz O, Bartsch P, Luks AM, MacInnis MJ, Baillie JK (2018) The Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 19(1):4–6

    Google Scholar 

  • Saltin B, Grover RF, Blomqvist CG, Hartley LH, Johnson RL Jr (1968) Maximal oxygen uptake and cardiac output after 2 weeks at 4,300m. J Appl Physiol 25(4):400–409

    Google Scholar 

  • Samaja MVA, Milano G (2013) Intermittent hypoxia: from molecular mechanisms to clinical applications. Nova Science Publishers Inc

  • Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT (2008) Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med 233(6):627–650

    CAS  Google Scholar 

  • Siebenmann C, Hug M, Keiser S, Müller A, van Lieshout J, Rasmussen P, Lundby C (2013) Hypovolemia explains the reduced stroke volume at altitude. Physiological Reports 1(5)

  • Stenberg J, Ekblom B, Messin R (1966) Hemodynamic response to work at simulated altitude, 4,000 m. J Appl Physiol 21(5):1589–1594

    CAS  Google Scholar 

  • Taralov ZZ, Terziyski KV, Dimov PK, Marinov BI, Kostianev SS (2018) Assessment of the impact of 10-day intermittent hypoxia on the autonomic control measured by heart rate variability. Physiol Int 105(4):386–396

    CAS  Google Scholar 

  • Terrados N (1992) Altitude training and muscular metabolism. Int J Sports Med 13(1):S206–S209

    Google Scholar 

  • Townsend NE, Gore CJ, Ebert TR, Martin DT, Hahn AG, Chow CM (2016) Ventilatory acclimatisation is beneficial for high-intensity exercise at altitude in elite cyclists. Eur J Sport Sci 16(8):895–902

    Google Scholar 

  • Viscor G, Ricart A, Pages T, Corral L, Javierre CF, Ventura JL (2014) Intermittent hypoxia for obstructive sleep apnea? High Alt Med Biol 15(4):520–521

    Google Scholar 

  • Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, Ventura JL (2018) Physiological and biological responses to short-term intermittent hypobaric hypoxia exposure: from sports and mountain medicine to new biomedical applications. Front Physiol 9:814

    Google Scholar 

  • Vogel JA, Hansen JE, Harris CW (1967) Cardiovascular responses in man during exhaustive work at sea level and high altitude. J Appl Physiol 23(4):531–539

    CAS  Google Scholar 

  • Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91(1):173–182

    CAS  Google Scholar 

  • West JB (2016) Cognitive impairment of school children at high altitude: the case for oxygen conditioning in schools. High Alt Med Biol 17(3):203–207

    CAS  Google Scholar 

  • Wilber RL, Stray-Gundersen J, Levine BD (2007) Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc 39(9):1590–1599

    Google Scholar 

  • Wille M, Gatterer H, Mairer K, Philippe M, Schwarzenbacher H, Faulhaber M, Burtscher M (2012) Short-term intermittent hypoxia reduces the severity of acute mountain sickness. Scand J Med Sci Sports 22(5):e79–e85

    CAS  Google Scholar 

  • Woorons X, Mollard P, Lamberto C, Letournel M, Richalet JP (2005) Effect of acute hypoxia on maximal exercise in trained and sedentary women. Med Sci Sports Exerc 37(1):147–154

    Google Scholar 

  • Yan X (2014) Cognitive impairments at high altitudes and adaptation. High Alt Med Biol 15(2):141–145

    Google Scholar 

  • Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura-Clapier R, Vogt M et al (2006) Exercise training in normobaric hypoxia in endurance runners. III Muscular adjustments of selected gene transcripts. J Appl Physiol 100(4):1258–1266

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Research Supporting Project (RSP2020/75), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atef M. Ghaleb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaleb, A.M., Ramadan, M.Z., Badwelan, A. et al. Determining the time needed for workers to acclimatize to hypoxia. Int J Biometeorol 64, 1995–2005 (2020). https://doi.org/10.1007/s00484-020-01989-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01989-8

Keywords

Navigation