Skip to main content
Log in

Responses of a 234U/238U activity ratio in groundwater to earthquakes in the South Baikal Basin, Siberia

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

In the western part of the South Baikal Basin, spatial-temporal distribution of earthquake epicenters shows quasi-periodic seismic reactivation. The largest earthquakes that occurred in 1999 (MW = 6.0) and 2008 (MW = 6.3) fall within seismic intervals of 1994–2003 and 2003–2012, respectively. In the seismic interval that began in 2013, the 234U/238U activity ratio (AR) in groundwater was monitored assuming its dependence on crack opening/closing that facilitated/prevented water circulation in an active boundary fault of the basin. Transitions from disordered, high-amplitude fluctuations of AR values to consistent, low-amplitude fluctuations in different monitoring sites were found to be sensitive indicators of both small seismic events occurring directly on the observation area, and of a large remote earthquake. The hydroisotopic responses to seismic events were consistent with monitoring data on deformation and temperature variations of rocks. The hydroisotopic effects can be applied for detecting a seismically dangerous state of an active fault and prediction of a large future earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Belichenko V G, Reznitsky L Z, Makrygina V A, Barash I G (2006). Terranes of the Baikal–Khubsugul fragment of the Central Asian mobile belt of Paleozoides: state of a problem. Geodynamic evolution of the lithosphere in the Central Asian mobile belt. In: Conference Proceedings 4(1) of an Ocean to a Continent. Irkutsk: Institute of the Earth crust SB RAS, 37–40

  • Boldina S V, Kopylova G N (2017). Effects of the January 30, 2016, Mw = 7.2 Zhupanovsky Earthquake on the water level variations in wells YuZ-5 and E-1 in Kamchatka. Geodynamics & Tectonophysics, 8(4): 863–880

    Article  Google Scholar 

  • Bornyakov S A, Miroshnichenko A I, Salko D (2015). Diagnostics of pre-seismogenic state of heterogeneous environments according to the deformation monitoring. Dokl Earth Sci, 468(1): 84–87

    Google Scholar 

  • Bornyakov S A, Ma J, Miroshnichenko A I, Guo Y, Salko D V, Zuev F L 2017. Diagnostics of meta-instable state of seismically active fault. Geodynamics & Tectonophysics 8(4): 989–998

    Article  Google Scholar 

  • Cizdziel J, Farmer D, Hodge V, Lindley K, Stetzenbach K (2005). 234U/238U isotope ratios in groundwater from Southern Nevada: a comparison of alpha counting and magnetic sector ICP-MS. Sci Total Environ, 350(1-3): 248–260

    Article  Google Scholar 

  • Chabaux F, Granet M, Larqué P, Riotte J, Skliarov E V, Skliarova O, Alexeieva L, Risacher F (2011). Geochemical and isotopic (Sr, U) variations of lake waters in the Ol’khon region, Siberia, Russia: Origin and paleoenvironmental implications. C R Geosci, 343(7): 462–470

    Article  Google Scholar 

  • Chalov P I (1975). Isotope Fractionation of Natural Uranium. Frunze: Ilim

    Google Scholar 

  • Chebykin E P, Goldberg E L, Kulikova N S, Zhuchenko N A, Stepanova O G, Malopevnaya Y A (2007). Method of determination of the isotopic composition of authigenic uranium in the bottom sediments of Lake Baikal. Russ Geol Geophys, 48(6): 604–616

    Article  Google Scholar 

  • Chebykin E P, Rasskazov S V, Vodneva E N, Ilyasova A M, Chuvashova I S, Bornyakov S A, Seminsky A K, Snopkov S V (2015). The first results of monitoring 234U/238U in water from active faults of the western coast of Southern Baikal. Dokl Earth Sci, 460(4): 464–467

    Google Scholar 

  • Cherdyntsev V V (1969). Uranium-234. Moscow: Atomizdat

    Google Scholar 

  • Cherdyntsev V V (1973). Nuclear Volcanology. Moscow: Nauka

    Google Scholar 

  • Chia Y, Chiu J J, Chiang Y H, Lee T P, Liu C W (2008). Spatial and temporal changes of groundwater level induced by thrust faulting. Pure Appl Geophys, 165(1): 5–16

    Article  Google Scholar 

  • Chipizubov A V, Smekalin O P (1999). Paleoseismodislocations and related paleoearthquakes at the Main Sayan Fault zone. Russ Geol Geophys, 40(6): 936–937

    Google Scholar 

  • Claesson L, Skelton A, Graham C, Dietl C, Mörth M, Torssander P, Kockum I (2004). Hydrogeochemical changes before and after a major earthquake. Geology, 32(8): 641–644

    Article  Google Scholar 

  • Crampin S (1994). The fracture criticality of crustal rocks. Geophys J Int, 118(2): 428–438

    Article  Google Scholar 

  • Crampin S, Gao Y, Bukits J (2015). A review of retrospective stressforecasts of earthquakes and eruptions. Phys Earth Planet Inter, 245: 76–87

    Article  Google Scholar 

  • Dobrynina A A, Sankov V A (2008). Destination ripping in earthquake hypocenters as an indicator of a propagating destructive process (Baikal rift system). In: Conference Proceedings 6(1) of Geodynamic evolution of the lithosphere in the Central Asian belt (from ocean to continent). Irkutsk: Institute of the Earth’s crust SB RAS, 110–112

  • Edgington D N, Robbins J A, Colman S M, Orlandini K A, Gustin M P (1996). Uranium-series disequilibrium, sedimentation, diatom frustules and paleoclimate change in Lake Baikal. Earth Planet Sci Lett, 142(1-2): 29–42

    Article  Google Scholar 

  • Finkel R C (1981). Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors. Geophys Res Lett, 8(5): 453–456

    Article  Google Scholar 

  • Florensov N A (1968). Baikal Rift Zone and Some Problems of Its Study. Moscow: Nauka, 40–56

    Google Scholar 

  • Goldberg E L, Grachev MA, Edgington D, Navier J, André L, Chebykin E P, Shulpyakov O I (2001). Direct U–Th dating of the two recent interglacials in the sediments of Lake. Baikal. Dokl Earth Sci, 380(6): 805–808

    Google Scholar 

  • Halicz L, Segal I, Gavrieli I, Lorber A, Karpas Z (2000). Determination of the 234U/238U ratio in water samples by inductively coupled plasma mass spectrometry. Anal Chim Acta, 422(2): 203–208

    Article  Google Scholar 

  • Hutchinson D R, Golmshtok A J, Zonenshain L P, Moore T C, Scholz C A, Klitgord K (1992). Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology, 20(7): 589–592

    Article  Google Scholar 

  • Johnson A G, Kovach R L, Nur A (1974). Fluid-pressure variations and fault creep in Central California. Tectonophysics, 23(3): 257–266

    Article  Google Scholar 

  • King C Y, Koizumi N, Kitagawa Y (1995). Hydrogeochemical anomalies and the 1995 kobe earthquake. Science, 269(5220): 38–39

    Article  Google Scholar 

  • Levi K G, Babushkin S M, Badardinov A A, Buddo V Yu, Larkin G V, Miroshnichenko A I, Sankov V A, Ruzhich V V, Wong X K, Delvo D, Coleman S (1995). Active tectonics of the Baikal depression. Russ Geol Geophys, 36(10): 154–163

    Google Scholar 

  • Li B, Shi Z, Wang G, Liu C (2019). Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China. J Hydrol, 579: 124175

    Article  Google Scholar 

  • Logatchev N A (1974). Sayan-Baikal and Stanovoy highlands. In: Highlands of Pribaikal and Transbaikal. Moscow: Nauka

    Google Scholar 

  • Maher K, DePaolo D J, Christensen J N (2006). U–Sr isotopic speedometer: fluid flow and chemical weathering rates in aquifers. Geochim Cosmochim Acta, 70(17): 4417–4435

    Article  Google Scholar 

  • Map of earthquake epicenters in the last ten days (2018). The Baikal Branch of the Geophysical Survey, Irkutsk. Available at www.seisbykl.ru/index.php?ma = 1

  • Melnikova V I, Gileva N A, Arefiev S S, Bykova V V, Masalskiy O K (2012). The Kultuk Earthquake in 2008 with Mw= 6.3 in the south of Lake Baikal: spatial-temporal analysis of seismic activity. Izvestiya. Physics of the Solid Earth, 48(11): 44–62

    Google Scholar 

  • Paces J B, Ludwig K R, Peterman Z E, Neymark L A (2002). 234U/238U evidence for local recharge and patterns of groundwater flow in the vicinity of Yucca Mountain, Nevada, USA. Appl Geochem, 17(6): 751–779

    Article  Google Scholar 

  • Pin C, Zalduegui J F S (1997). Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta, 339(1-2): 79–89

    Article  Google Scholar 

  • Plastino W, Panza G F, Doglioni C, Frezzotti M L, Peccerillo A, De Felice P, Bella F, Povinec P P, Nisi S, Ioannucci L, Aprili P, Balata M, Cozzella M L, Laubenstein M (2011). Uranium groundwater anomalies and active normal faulting. J Radioanal Nucl Chem, 288 (1): 101–107

    Article  Google Scholar 

  • Radziminovich N A, Melnikova V I, Sankov V A, Levi K G (2006). Seismicity and seismotectonic deformation of crust in the South Baikal Basin, Izvestiya. Physics of the Solid Earth, 42(11): 44–62

    Google Scholar 

  • Rasskazov S V, Chebykin E P, Ilyasova A M, Vodneva E N, Chuvashova I S, Bornyakov S A, Seminsky A K, Snopkov S V, Chechel’nitsky V V, Gileva N A (2015). Creating the Kultuk polygon for earthquake prediction: variations of (234U/238U) and 87Sr/86Sr in groundwater from active faults at the western shore of Lake Baikal. Geodynamics & Tectonophysics 6(4): 519–553

    Article  Google Scholar 

  • Rasskazov S V, Ilyasova A M, Chuvashova I S, Chebykin E P (2018). The 234U/238U variations in groundwater from the Mondy area in response to earthquakes at the termination of the Tunka Valley in the Baikal Rift System. Geodynamics & Tectonophysics 9(4): 1217–1234

    Article  Google Scholar 

  • Rasskazov S V, Yasnygina T A, Chuvashova I S, Mikheeva E A, Snopkov S V (2013). The Kultuk Volcano: spatial-temporal change of magmatic sources at the western terminus of the South Baikal Basin between 18 and 12 Ma. Geodynamics & Tectonophysics 4 (2): 135–168

    Article  Google Scholar 

  • Reddy D V, Nagabhushanam P, Sukhija B S (2011). Earthquake (M= 5.1) induced hydrogeochemical and δ18O changes: validation of aquifer breaching-mixing model in Koyna, India. Geophys J Int, 184 (1): 359–370

    Article  Google Scholar 

  • Riotte J, Chabaux F (1999). (234U/238U) activity ratios in freshwaters as tracers of hydrological processes: the Strengbach watershed (Vosges, France). Geochim Cosmochim Acta, 63(9): 1263–1275

    Article  Google Scholar 

  • Ruzhich V V (1997). Seismotectonic Destruction in the Crust of the Baikal Rift Zone. Novosibirsk: Publishing House of SB RAS

    Google Scholar 

  • Sankov V A, Lukhnev A V, Miroshnichenko A I, Dobrynin A A, Ashurkov S V, Byzov L M, Dembelov M G, Calais E, Deversher J (2014). Modern horizontal movement and seismic activity south of the Baikal basin (Baikal rift system). Physics of the Earth, 6: 70–79

    Google Scholar 

  • Shafeev A A (1970). Precambrian of the South-Western Pribaikalye and Khamar-Daban. Moscow: Nauka

    Google Scholar 

  • Shen C C, Lawrence Edwards R, Cheng H, Dorale J A, Thomas R B, Bradley Moran S, Weinstein S E, Edmonds H N (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol, 185(3–4): 165–178

    Article  Google Scholar 

  • Sherman S I (2009). A tectonophysical model of a seismic zone: experience of development based on the example of the Baikal rift system. Izvestiya. Physics of the Solid Earth, 45(11): 938–951

    Article  Google Scholar 

  • Sherman S I (2013). Deformation waves as a trigger mechanism of seismic activity in seismic zones of the continental lithosphere. Geodynamics & Tectonophysics 4 (2): 83–117.

    Article  Google Scholar 

  • Sherman S I (2014). The Seismic Process, and Earthquake Prediction: Tectonophysical Concept. Novosibirsk: Academic Publishing House “Geo”

    Google Scholar 

  • Shi Z, Wang G, Manga M, Wang C Y (2015). Mechanism of co-seismic water level change following four great earthquakes—insights from co-seismic responses throughout the Chinese mainland. Earth Planet Sci Lett, 430: 66–74

    Article  Google Scholar 

  • Sobolev G A (1993). Fundamentals of Earthquake Prediction. Moscow: Nauka

    Google Scholar 

  • Sobolev G A, Lyubshin A A Jr, Zakrzhevskaya N A (2005). Synchronization of microseismic variations within minute range of periods. Izvestiya. Physics of the Solid Earth, 41(8): 3–27

    Google Scholar 

  • Solonenko, V P (1974). Seismogeology and the problem of prediction of earthquakes. Geology and Geophysics 5: 168–178

    Google Scholar 

  • Sukhija B S, Reddy D V, Nagabhushanam P, Kumar B (2010). Significant temporal changes in13C in dissolved inorganic carbon of groundwater related to reservoir-triggered seismicity. Seismol Res Lett, 81(2): 218–224

    Article  Google Scholar 

  • Timofeev V Y, Kalish E N, Stus Y F, Ardyukov D G, Arnautov G P, Smirnov M G, Timofeev A V, Nosov D A, Sizikov I S, Boyko E V, Gribanova E I (2013). Gravity variations and modern geodynamics southwestern part of the Baikal region. Geodynamics & Tectonophysics 4 (2): 135–168

    Article  Google Scholar 

  • Tsunogai U, Wakita H (1995). Precursory chemical changes in ground water: Kobe Earthquake, Japan. Science, 269(5220): 61–63

    Article  Google Scholar 

  • Wang R M, You C F (2013). Uranium and strontium isotopic evidence for strong submarine groundwater discharge in an estuary of a mountainous island: a case study in the Gaoping River estuary. Mar Chem, 157: 106–116

    Article  Google Scholar 

  • Zverev V L, Dolidze N I, Spiridonov A I (1975). Anomaly of even isotopes of uranium in groundwater of seismically active regions of Georgia. Geochem Int, (11): 1720–1724

Download references

Acknowledgements

We are grateful to Drew Coleman for critical reading and correction of the manuscript and also to anonymous reviewer for constructive comments. In analytical work, we used an Agilent 7500 ce quadrupole mass spectrometer in the collective use center “Ultramicroanalysis” (Limnological institute of the Siberian Branch of the Russian Academy of Sciences, Irkutsk) and a Finnigan MAT 262 mass spectrometer of the collective use center “Geochronology and Geodynamics” (Institute of the Earth’s crust SB RAS, analyst N.N. Fefelov). The work has been prepared with the financial support of Russian Science Foundation (grant 18-77-10027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Rasskazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasskazov, S., Ilyasova, A., Bornyakov, S. et al. Responses of a 234U/238U activity ratio in groundwater to earthquakes in the South Baikal Basin, Siberia. Front. Earth Sci. 14, 711–737 (2020). https://doi.org/10.1007/s11707-020-0821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-020-0821-5

Keywords

Navigation