Skip to main content

Advertisement

Log in

First record on mercury accumulation in mice brain living in active volcanic environments: a cytochemical approach

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The health effects of mercury vapor exposure on the brain in volcanic areas have not been previously addressed in the literature. However, 10% of the worldwide population inhabits in the vicinity of an active volcano, which are natural sources of elemental mercury emission. To evaluate the presence of mercury compounds in the brain after chronic exposure to volcanogenic mercury vapor, a histochemical study, using autometallographic silver, was carried out to compare the brain of mice chronically exposed to an active volcanic environment (Furnas village, Azores, Portugal) with those not exposed (Rabo de Peixe village, Azores, Portugal). Results demonstrated several mercury deposits in blood vessels, white matter and some cells of the hippocampus in the brain of chronically exposed mice. Our results highlight that chronic exposure to an active volcanic environment results in brain mercury accumulation, raising an alert regarding potential human health risks. These findings support the hypothesis that mercury exposure can be a risk factor in causing neurodegenerative diseases in the inhabitants of volcanically active areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiuppa, A., Dongarrà, G., Valenza, M., Federico, C., & Pecoraino, G. (2003). Degassing of trace volatile metals during the 2001 eruption of Etna. Washington DC American Geophysical Union Geophysical Monograph Series, 139, 41–54.

    CAS  Google Scholar 

  • Allard, P., Aiupp, A., Loyer, H., Carrot, F., Gaudry, A., Pinte, G., et al. (2000). Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophysical Research Letter, 27(8), 1207–1210.

    CAS  Google Scholar 

  • Allen, J. L., Oberdorster, G., Morris-Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., et al. (2017). Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology, 59, 140–154.

    CAS  Google Scholar 

  • Amaral, A., & Rodrigues, A. S. (2007). Chronic exposure to volcanic environments and chronic bronchitis incidence in the Azores. Portugal. Environmental Research, 103(3), 419–423.

    CAS  Google Scholar 

  • Amaral, A., & Rodrigues, A. S. (2011). Volcanogenic contaminants: chronic exposure. In J. Nriagu (Ed.), Encyclopedia of environmental health (pp. 681–689). New York: Elsevier.

    Google Scholar 

  • Amaral, A., Cruz, J. V., Cunha, R. T., & Rodrigues, A. S. (2006a). Baseline levels of metals in volcanic soils of the Azores (Portugal). Soil and Sediment Contamination, 15, 123–130.

    CAS  Google Scholar 

  • Amaral, A., Rodrigues, V., Oliveira, J., Pinto, C., Carneiro, V., Sanbento, R., et al. (2006b). Chronic exposure to volcanic environments and cancer incidence in the Azores Portugal. Science of the Total Environmental, 367(1), 123–128.

    CAS  Google Scholar 

  • Amaral, A. F., Arruda, M., Cabral, S., & Rodrigues, A. S. (2008). Essential and non-essential trace metals in scalp hair of men chronically exposed to volcanogenic metals in the Azores Portugal. Environment International, 34(8), 1104–1108.

    CAS  Google Scholar 

  • Aschner, M., & Aschner, J. L. (1989). Mucocutaneous lymph node syndrome: Is there a relationship to mercury exposure? American Journal of Diseases of Children, 143(10), 1133–1134.

    CAS  Google Scholar 

  • Aschner, M., & Aschner, J. L. (1990). Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neuroscience and Biobehavioral Reviews, 14(2), 169–176.

    CAS  Google Scholar 

  • Bagnato, E., Aiuppa, A., Parello, F., Allard, P., Shinohara, H., Liuzzo, M., et al. (2011). New clues on the contribution of Earth’s volcanism to the global mercury cycle. Bulletin of Volcanology, 73(5), 497–510.

    Google Scholar 

  • Bagnato, E., Barra, M., Cardellini, C., Chiodini, G., Parello, F., & Sprovieri, M. (2014). First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): Mapping and quantification of gas release. Journal of Volcanology and Geothermal Research, 289, 26–40.

    CAS  Google Scholar 

  • Bagnato, E., Viveiros, F., Pacheco, J. E., D'Agostino, F., Silva, C., & Zanon, V. (2018). Hg and CO2 emissions from soil diffuse degassing and fumaroles at Furnas Volcano (São Miguel Island, Azores): Gas flux and thermal energy output. Journal of Geochemical Exploration, 190, 39–57.

    CAS  Google Scholar 

  • Bjørklund, G., Dadar, M., Mutter, J., & Aaseth, J. (2017). The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, 545–554.

    Google Scholar 

  • Block, M. L., & Calderón-Garcidueñas, L. (2009). Air pollution: mechanisms of neuroinflammation and CNS disease. Trends in Neuroscience, 32(9), 506–516.

    CAS  Google Scholar 

  • Calderón-Garcidueñas, L., Azzarelli, B., Acuna, H., Garcia, R., Gambling, T. M., Osnaya, N., et al. (2002). Air pollution and brain damage. Toxicologic Pathology, 30(3), 373–389.

    Google Scholar 

  • Campbell, A., Oldham, M., Becaria, A., Bondy, S. C., Meacher, D., Sioutas, C., et al. (2005). Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology, 26(1), 133–140.

    CAS  Google Scholar 

  • Cariccio, V. L., Samà, A., Bramanti, P., & Mazzon, E. (2019). Mercury involvement in neuronal damage and in neurodegenerative diseases. Biological Trace Element Research, 187(2), 341–356.

    CAS  Google Scholar 

  • Carvalho, M.R.E. (1999). Hidrogeologia do Maciço Vulcánico de Agua de Pau/Fogo (São Miguel-Açores) Ph.D Thesis. Universidade de Lisboa, Lisboa.

  • Chang, L. W., & Hartmann, H. A. (1972). Ultrastructural studies of the nervous system after mercury intoxication. Acta Neuropathologica, 20(4), 316–334.

    CAS  Google Scholar 

  • Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Criticial Reviews in Toxicology, 36(8), 609–662.

    CAS  Google Scholar 

  • Danscher, G. (1991). Applications of autometallography to heavy metal toxicology. Pharmacology and Toxicology, 68(6), 414–423.

    CAS  Google Scholar 

  • Danscher, G., & Møller-Madsen, B. (1985). Silver amplification of mercury sulfide and selenide: a histochemical method for light and electron microscopic localization of mercury in tissue. Journal of Histochemistry and Cytochemistry, 33(3), 219–228.

    CAS  Google Scholar 

  • Danscher, G., Stoltenberg, M., & Juhl, S. (1994). How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathology and Applied Neurobiology, 20(5), 454–467.

    CAS  Google Scholar 

  • Erickson, M. A., & Banks, W. A. (2013). Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 33(10), 1500–1513.

    CAS  Google Scholar 

  • Fahrenkrog, B., & Harel, A. (2018). Perturbations in traffic: aberrant nucleocytoplasmic transport at the heart of neurodegeneration. Cells, 7(12), 232.

    CAS  Google Scholar 

  • Fernandes Azevedo, B., Barros Furieri, L., Peçanha, F. M., Wiggers, G. A., Frizera Vassallo, P., Ronacher Simões, M., et al. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. BioMed Research International, 2012, 1–11.

    Google Scholar 

  • Ferreira, A. F., Garcia, P. V., Camarinho, R., & Rodrigues, A. S. (2015). Volcanogenic pollution and testicular damage in wild mice. Chemosphere, 132, 135–141.

    CAS  Google Scholar 

  • Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson's disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104(3), 420–432.

    CAS  Google Scholar 

  • Forsyth, D. J. (2001). Extrapolation of laboratory tests to field populations. In R. F. Shore & B. A. Rattner (Eds.), Ecotoxicology of Wild Mammals (pp. 577–634). New York: Wiley.

    Google Scholar 

  • Garbuzova-Davis, S., Haller, E., Williams, S. N., Haim, E. D., Tajiri, N., Hernandez-Ontiveros, D. G., et al. (2014). Compromised blood–brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. Journal of Comparative Neurology, 522(13), 3120–3137.

    Google Scholar 

  • Gray, M. T., & Woulfe, J. M. (2015). Striatal blood–brain barrier permeability in Parkinson's disease. Journal of Cerebral Blood Flow and Metabolism, 35(5), 747–750.

    CAS  Google Scholar 

  • Graeme, K. A., & Pollack, C. V., Jr. (1998). Heavy metal toxicity, part I: arsenic and mercury. The Journal of Emergency Medicine, 16(1), 45–56.

    CAS  Google Scholar 

  • Gustin, M. S., Lindberg, S. E., & Weisberg, P. J. (2008). An update on the natural sources and sinks of atmospheric mercury. Applied Geochemistry, 23(3), 482–493.

    CAS  Google Scholar 

  • Hansell, A., & Oppenheimer, C. (2004). Health hazards from volcanic gases: A systematic literature review. Archives of Environmental Health, 59(12), 628–639.

    CAS  Google Scholar 

  • Hinkley, T. K., Lamothe, P. J., Wilson, S. A., Finnegan, D. L., & Gerlach, T. M. (1999). Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes. Earth and Planetary Scencei Letters, 170, 315–325.

    CAS  Google Scholar 

  • Jinde, S., Zsiros, V., Jiang, Z., Nakao, K., Pickel, J., Kohno, K., et al. (2012). Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron, 76(6), 1189–1200.

    CAS  Google Scholar 

  • Kann, O. (2016). The interneuron energy hypothesis: implications for brain disease. Neurobiology of Disease, 90, 75–85.

    CAS  Google Scholar 

  • Kelman, I., & Mather, T. A. (2008). Living with volcanoes: the sustainable livelihoods approach for volcano-related opportunities. Journal of Volcanology and Geothermal Research, 172(3–4), 189–198.

    CAS  Google Scholar 

  • Kungolos, A. (2006). Environmental toxicology. Boston: WIT Press.

    Google Scholar 

  • Larsen, M., Bjarkam, C. R., Stoltenberg, M., Sorensen, J. C., & Danscher, G. (2003). An autometallographic technique for myelin staining in formaldehyde-fixed tissue. Histology and Histopathology, 18, 1125–1130.

    CAS  Google Scholar 

  • Lebel, J., Mergler, D., Branches, F., Lucotte, M., Amorim, M., Larribe, F., et al. (1998). Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environmental Research, 79(1), 20–32.

    CAS  Google Scholar 

  • Leyshon-Sørland, K., Jasani, B., & Morgan, A. J. (1994). The localization of mercury and metallothionein in the cerebellum of rats experimentally exposed to methylmercury. The Histochemical Journal, 26(2), 161–169.

    Google Scholar 

  • Linhares, D., Pimentel, A., Borges, C., Cruz, J. V., Garcia, P., & Rodrigues, A. (2019). Cobalt distribution in the soils of São Miguel Island (Azores): From volcanoes to health effects. Science of the Total Environment, 684, 715–721.

    CAS  Google Scholar 

  • Linhares, D., Garcia, P. V., Viveiros, F., Ferreira, T., & Rodrigues, A. S. (2015). Air pollution by hydrothermal volcanism and human pulmonary function. BioMed Research International, 2015, 1–10.

    Google Scholar 

  • Madar, A. D., Ewell, L. A., & Jones, M. V. (2019). Pattern separation of spiketrains in hippocampal neurons. Scientific Reports, 9(1), 5282.

    Google Scholar 

  • Mather, T. A., Pyle, D. M., & Oppenheimer, C. (2003). Tropospheric volcanic aerosol. In A. Robock & C. Oppenheimer (Eds.), Volcanism and the Earth's atmosphere (pp. 189–212). Washington DC: American Geophysical Union.

    Google Scholar 

  • Morris, G., Puri, B. K., Frye, R. E., & Maes, M. (2018). The putative role of environmental mercury in the pathogenesis and pathophysiology of autism spectrum disorders and subtypes. Molecular Neurobiology, 55(6), 4834–4856.

    CAS  Google Scholar 

  • Moulton, P. V., & Yang, W. (2012). Air pollution, oxidative stress, and Alzheimer's disease. Environmental Research and Public Health, 2012, 1–9.

    Google Scholar 

  • Nriagu, J., & Becker, C. (2003). Volcanic emissions of mercury to the atmosphere: global and regional inventories. Science of the Total Environment, 304, 3–12.

    CAS  Google Scholar 

  • Ogata, M., Kenmotsu, K., Hirota, N., Meguro, T., & Aikoh, H. (1987). Reduction of mercuric ion and exhalation of mercury in acatalasemic and normal mice. Archives of Environmental Health An International Journa I, 42(1), 26–30.

    CAS  Google Scholar 

  • Ortiz, G. G., Pacheco-Moisés, F. P., Macías-Islas, M. Á., Flores-Alvarado, L. J., Mireles-Ramírez, M. A., González-Renovato, E. D., et al. (2014). Role of the blood–brain barrier in multiple sclerosis. Archives of Medical Research, 45(8), 687–697.

    CAS  Google Scholar 

  • Palacios, N., Fitzgerald, K. C., Hart, J. E., Weisskopf, M. G., Schwarzschild, M. A., Ascherio, A., et al. (2014). Particulate matter and risk of Parkinson disease in a large prospective study of women. Environmental Health, 13(1), 1–9.

    Google Scholar 

  • Pamphlett, R., & Kum Jew, S. (2016). Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury. BioMetals, 29(1), 171–175.

    CAS  Google Scholar 

  • Pamphlett, R., & Kum Jew, S. (2018). Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: Implications for multiple sclerosis, neurodegenerative disorders and gliomas. BioMetals, 31(5), 807–819.

    CAS  Google Scholar 

  • Pamphlett, R., & Kum Jew, S. (2001). Mercury vapor uptake into the nervous system of developing mice. Neurotoxicology and Teratology, 23(2), 191–196.

    CAS  Google Scholar 

  • Pamphlett, R., Kum-Jew, S., & Cherepanoff, S. (2019). Mercury in the retina and optic nerve following prenatal exposure to mercury vapor. PLoS ONE, 14(8), 1–16.

    Google Scholar 

  • Parelho, C., Rodrigues, A. S., Cruz, J. V., & Garcia, P. (2014). Linking trace metals and agricultural land use in volcanic soils: A multivariate approach. Science of the Total Environment, 496, 241–247.

    CAS  Google Scholar 

  • Piikivi, L., Hänninen, H., Martelin, T., & Mantere, P. (1984). Psychological performance and long-term exposure to mercury vapors. Scandinavian Journal of Work, Environment and Health, 10, 35–41.

    CAS  Google Scholar 

  • Quéré, J. P., & Vincent, J. P. (1989). Détermination de l'âge chez le mulot gris (Apodemus sylvaticus L., 1758) par la pesée des cristallins. Mammalia, 53, 287–294.

    Google Scholar 

  • Rice, K. M., Walker, E. M., Jr., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47(2), 74.

    Google Scholar 

  • Ritz, B., Lee, P. C., Hansen, J., Lassen, C. F., Ketzel, M., Sørensen, M., et al. (2016). Traffic-related air pollution and Parkinson’s disease in Denmark: A case–control study. Environmental Health Perspectives, 124(3), 351–356.

    CAS  Google Scholar 

  • Rodrigues, A. S., & Garcia, P. V. (2015). 13. Non-eruptive volcanogenic air pollution and health effects. Handbook of Public Health in Natural Disasters, 223.

  • Scharfman, H. E. (2016). The enigmatic mossy cell of the dentate gyrus. Nature Reviews Neuroscience, 17(9), 1–14.

    Google Scholar 

  • Selin, N. E. (2009). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34, 43–63.

    Google Scholar 

  • Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., & Stix, J. (2015). Encyclopedia of volcanoes. Amsterdam: Elsevier.

    Google Scholar 

  • Solan, T. D., & Lindow, S. W. (2014). Mercury exposure in pregnancy: A review. Journal of Perinatal Medicine, 42(6), 725–729.

    CAS  Google Scholar 

  • Stankovic, R. (2006). Atrophy of large myelinated motor axons and declining muscle grip strength following mercury vapor inhalation in mice. Inhalation Toxicology, 18(1), 57–69.

    CAS  Google Scholar 

  • Steinwall, O., & Klatzo, I. (1966). Selective vulnerability of the blood-brain barrier in chemically induced lesions. Journal of Neuropathology and Experimental Neurology, 25(4), 542–559.

    CAS  Google Scholar 

  • Steinwall, O., & Olsson, Y. (1969). Impairment of the blood-brain barrier in mercury poisoning. Acta Neurologica Scandinavica, 45(3), 351–361.

    CAS  Google Scholar 

  • Takahashi, T., & Shimohata, T. (2019). Vascular dysfunction induced by mercury exposure. International Journal of Molecular Science, 20(10), 1–12.

    Google Scholar 

  • Takahashi, T., Fujimura, M., Koyama, M., Kanazawa, M., Usuki, F., Nishizawa, M., et al. (2017). Methylmercury causes blood-brain barrier damage in rats via upregulation of vascular endothelial growth factor expression. PLoS ONE, 12(1), 1–10.

    Google Scholar 

  • Tersago, K., De Coen, W., Scheirs, J., Vermeulen, K., Blust, R., Van Bockstaele, D., et al. (2004). Immunotoxicology in wood mice along a heavy metal pollution gradient. Environmental Pollution, 132, 385–394.

    CAS  Google Scholar 

  • Viveiros, F., Cardellini, C., Ferreira, T., Caliro, S., Chiodini, G., & Silva, C. (2010). Soil CO2 emissions at Furnas volcano, São Miguel Island, Azores archipelago: Volcano monitoring perspectives, geomorphologic studies, and land use planning application. Journal of Geophysical Research: Solid Earth, 115, 1–17.

    Google Scholar 

  • Walsh, T. J., & Emerich, D. F. (1988). The hippocampus as a common target of neurotoxic agents. Toxicology, 49(1), 137–140.

    CAS  Google Scholar 

  • Watt, S. F., Pyle, D. M., Mather, T. A., Day, J. A., & Aiuppa, A. (2007). The use of tree-rings and foliage as an archive of volcanogenic cation deposition. Environmental Pollution, 148(1), 48–61.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Paulo Melo for the field assistance in the capture of Mus musculus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Segovia.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro-Sempere, A., Segovia, Y., Rodrigues, A.S. et al. First record on mercury accumulation in mice brain living in active volcanic environments: a cytochemical approach. Environ Geochem Health 43, 171–183 (2021). https://doi.org/10.1007/s10653-020-00690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00690-4

Keywords

Navigation