Skip to main content
Log in

Meshless local numerical procedure based on interpolating moving least squares approximation and exponential time differencing fourth-order Runge–Kutta (ETDRK4) for solving stochastic parabolic interface problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The main propose of this investigation is to develop an interpolating meshless numerical procedure for solving the stochastic parabolic interface problems. The present numerical algorithm is constructed from the interpolating moving least squares (ISMLS) approximation. At first, the space variable has been discretized by using the ISMLS approximation. Then, the PDE reduces to the system of nonlinear ODEs. In the next, to achieve a high-order numerical formula, we employ a fourth-order time discrete scheme that is well-known as the explicit fourth-order exponential time differencing Runge-Kutta method (ETDRK4). This method is simple and has acceptable accuracy for solving the considered problems. Several examples with adequate intricacy are examined to check the new numerical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abbaszadeh M, Dehghan M (2019) Meshless upwind local radial basis function-finite difference technique to simulate the time fractional distributed-order advection–diffusion equation. Eng Comput. https://doi.org/10.1007/s00366-019-00861-7

    Article  Google Scholar 

  2. Abbaszadeh M, Dehghan M (2019) The interpolating element-free Galerkin method for solving Korteweg–de Vries–Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn 96:1345–1365

    MATH  Google Scholar 

  3. Abbaszadeh M, Dehghan M (2019) Numerical and analytical investigations for neutral delay fractional damped diffusion-wave equation based on the stabilized interpolating element free Galerkin (IEFG) method. Appl Numer Math 145:488–506

    MathSciNet  MATH  Google Scholar 

  4. Abbaszadeh M, Dehghan M, Khodadadian A, Heitzinger C (2020) Analysis and application of the interpolating element free Galerkin (IEFG) method to simulate the prevention of groundwater contamination with application in fluid flow. J Comput Appl Math 368:112453

    MathSciNet  MATH  Google Scholar 

  5. Abbaszadeh M, Dehghan M (2020) Investigation of the Oldroyd model as a generalized incompressible Navier–Stokes equation via the interpolating stabilized element free Galerkin technique. Appl Numer Math 150:274–294

    MathSciNet  MATH  Google Scholar 

  6. Ahmad M Siraj-ul-Islam (2018) Meshless analysis of parabolic interface problems. Eng Anal Bound Elem 9:134–152

    MathSciNet  MATH  Google Scholar 

  7. Benito JJ, Ureña F, Ureña M, Salete E, Gavete L (2018) A new meshless approach to deal with interfaces in seismic problems. Appl Math Model 58:447–458

    MathSciNet  MATH  Google Scholar 

  8. Brezzi F, Douglas J, Marini LD (1985) Two families of mixed finite elements for second order elliptic problems. Numer Math 47(2):217–235

    MathSciNet  MATH  Google Scholar 

  9. Cao Y, Wang B, Xia K, Wei G (2017) Finite volume formulation of the mib method for elliptic interface problems. J Comput Appl Math 321:60–77

    MathSciNet  MATH  Google Scholar 

  10. Cheng H, Peng MJ, Cheng YM (2019) Analyzing wave propagation problems with the improved complex variable element-free Galerkin method. Eng Anal Bound Elem 100:80–87

    MathSciNet  MATH  Google Scholar 

  11. Cheng H, Peng MJ, Cheng YM (2018) The dimension splitting and improved complex variable element-free Galerkin method for 3-dimensional transient heat conduction problems. Int J Numer Methods Eng 20:321–345

    MathSciNet  Google Scholar 

  12. Cheng H, Peng MJ, Cheng YM (2018) A hybrid improved complex variable element-free Galerkin method for three-dimensional advection–diffusion problems. Eng Anal Bound Elem 97:39–54

    MathSciNet  Google Scholar 

  13. Dehghan M, Abbaszadeh M (2018) Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems. Comput Methods Appl Mech Eng 328:775–803

    MathSciNet  MATH  Google Scholar 

  14. Dehghan M, Abbaszadeh M (2017) Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput Math Appl 73:1270–1285

    MathSciNet  MATH  Google Scholar 

  15. Dehghan M (2007) The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons Fractals 32:661–675

    MathSciNet  MATH  Google Scholar 

  16. Eriksson S, Nordström J (2018) Finite difference schemes with transferable interfaces for parabolic problems. J Comput Phys 375:935–949

    MathSciNet  MATH  Google Scholar 

  17. Ghanem RG, Spanos PD (1991) Stochastic finite element method: response statistics. In: Stochastic finite elements: a spectral approach. Springer, Berlin, pp 101–119

  18. Hadley GR (2002) High-accuracy finite-difference equations for dielectric waveguide analysis I: uniform regions and dielectric interfaces. J Lightwave Technol 20(7):1210–1218

    Google Scholar 

  19. Haider N, Aziz I et al (2018) Meshless and multi-resolution collocation techniques for parabolic interface models. Appl Math Comput 335:313–332

    MathSciNet  MATH  Google Scholar 

  20. Harari I, Dolbow J (2010) Analysis of an efficient finite element method for embedded interface problems. Comput Mech 46(1):205–211

    MathSciNet  MATH  Google Scholar 

  21. Harbrecht H, Li J (2013) First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM: Math Model Numer Anal 47(5):1533–1552

    MathSciNet  MATH  Google Scholar 

  22. He X, Lin T, Lin Y (2010) Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient. J Syst Sci Complex 23(3):467–483

    MathSciNet  MATH  Google Scholar 

  23. Heitzinger C, Mauser NJ, Ringhofer C (2010) Multiscale modeling of planar and nanowire field-effect biosensors. SIAM J Appl Math 70(5):1634–1654

    MathSciNet  MATH  Google Scholar 

  24. Hessari P, Shin B-C, Jang B (2015) Analysis of least squares pseudo-spectral method for the interface problem of the Navier–Stokes equations. Comput Math Appl 69(8):838–851

    MathSciNet  MATH  Google Scholar 

  25. Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332

    MathSciNet  MATH  Google Scholar 

  26. Hou TY, Li Z, Osher S, Zhao H (1997) A hybrid method for moving interface problems with application to the Hele–Shaw flow. J Comput Phys 134(2):236–252

    MathSciNet  MATH  Google Scholar 

  27. Khan A, Upadhyay CS, Gerritsma M (2018) Spectral element method for parabolic interface problems. Comput Methods Appl Mech Eng 337:66–94

    MathSciNet  MATH  Google Scholar 

  28. Khodadadian A, Taghizadeh L, Heitzinger C (2018) Optimal multilevel randomized quasi-Monte-Carlo method for the stochastic drift–diffusion–Poisson system. Comput Methods Appl Mech Eng 329:480–497

    MathSciNet  MATH  Google Scholar 

  29. Layton AT (2009) Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces. Comput Fluids 38(2):266–272

    MathSciNet  MATH  Google Scholar 

  30. Li X (2018) Three-dimensional complex variable element-free Galerkin method. Appl Math Model 63:148–171

    MathSciNet  MATH  Google Scholar 

  31. Li X, Wang Q (2016) Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases. Eng Anal Bound Elem 73:21–34

    MathSciNet  MATH  Google Scholar 

  32. Liang X, Khaliq AQ, Xing Y (2015) Fourth order exponential time differencing method with local discontinuous galerkin approximation for coupled nonlinear Schrödinger equations. Commun Comput Phys 17(2):510–541

    MathSciNet  MATH  Google Scholar 

  33. Liu F, Cheng YM (2018) The improved element-free Galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels. Int J Appl Mech 10:1850047

    Google Scholar 

  34. Liu F, Wu Q, Cheng YM (2019) A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems. Int J Appl Mech 11:1950006

    Google Scholar 

  35. Liu D, Cheng YM (2019) The interpolating element-free Galerkin (IEFG) method for three-dimensional potential problems. Eng Anal Bound Elem 108:115–123

    MathSciNet  MATH  Google Scholar 

  36. Oevermann M, Klein R (2006) A cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J Comput Phys 219(2):749–769

    MathSciNet  MATH  Google Scholar 

  37. Ren HP, Cheng YM, Zhang W (2009) An improved boundary element-free method (IBEFM) for two-dimensional potential problems. Chin Phys B 18(10):4065–4073

    Google Scholar 

  38. Ren H, Cheng YM (2011) The interpolating element-free Galerkin (IEFG) method for two-dimensional elasticity problems. Int J Appl Mech 3(4):735–358

    MathSciNet  Google Scholar 

  39. Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37(12):1693–1702

    MathSciNet  MATH  Google Scholar 

  40. Shivanian E (2016) Local integration of population dynamics via moving least squares approximation. Eng Comput 32(2):331–342

    Google Scholar 

  41. Shivanian E, Abbasbandy S, Alhuthali MS, Alsulami HH (2015) Local integration of 2-D fractional telegraph equation via moving least squares approximation. Eng Anal Bound Elem 56:98–105

    MathSciNet  MATH  Google Scholar 

  42. Sun F, Wang J, Cheng YM (2016) An improved interpolating element-free Galerkin method for elastoplasticity via nonsingular weight functions. Int J Appl Mech 8(8):1650096

    Google Scholar 

  43. Taleei A, Dehghan M (2014) Direct meshless local Petrov–Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput Methods Appl Mech Eng 278:479–498

    MathSciNet  MATH  Google Scholar 

  44. Taleei A, Dehghan M (2015) An efficient meshfree point collocation moving least squares method to solve the interface problems with nonhomogeneous jump conditions. Numer Methods Partial Differ Equ 31(4):1031–1053

    MathSciNet  MATH  Google Scholar 

  45. Tartakovsky DM, Guadagnini A (2004) Effective properties of random composites. SIAM J Sci Comput 26(2):625–635

    MathSciNet  MATH  Google Scholar 

  46. Wang JF, Sun FX, Cheng YM (2012) An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems. Chin Phys B 21(9):090204

    Google Scholar 

  47. Wang J, Sun F, Cheng YM, Huang A (2014) Error estimates for the interpolating moving least-squares method. Appl Math Comput 245:321–342

    MathSciNet  MATH  Google Scholar 

  48. Xia K, Zhan M, Wei G-W (2014) MIB Galerkin method for elliptic interface problems. J Comput Appl Math 272:195–220

    MathSciNet  MATH  Google Scholar 

  49. Yu SY, Peng MJ, Cheng H, Cheng YM (2019) The improved element-free Galerkin method for three-dimensional elastoplasticity problems. Eng Anal Bound Elem 104:215–224

    MathSciNet  MATH  Google Scholar 

  50. Zhang Q, Li Z, Zhang Z (2016) A sparse grid stochastic collocation method for elliptic interface problems with random input. J Sci Comput 67(1):262–280

    MathSciNet  MATH  Google Scholar 

  51. Zhao S (2010) High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces. J Comput Phys 229(9):3155–3170

    MathSciNet  MATH  Google Scholar 

  52. Zhou T (2011) Stochastic Galerkin methods for elliptic interface problems with random input. J Comput Appl Math 236(5):782–792

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Abbaszadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, M., Dehghan, M. Meshless local numerical procedure based on interpolating moving least squares approximation and exponential time differencing fourth-order Runge–Kutta (ETDRK4) for solving stochastic parabolic interface problems. Engineering with Computers 38 (Suppl 1), 71–91 (2022). https://doi.org/10.1007/s00366-020-01057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01057-0

Keywords

Mathematics Subject Classification

Navigation