Skip to main content
Log in

Almost Sure Weyl Law for Quantized Tori

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the eigenvalues of the Toeplitz quantization of complex-valued functions on the torus subject to small random perturbations given by a complex-valued random matrix whose entries are independent copies of a random variable with mean 0, variance 1 and bounded fourth moment. We prove that the eigenvalues of the perturbed operator satisfy a Weyl law with probability close to one, which proves in particular a conjecture by Christiansen and Zworski (Commun Math Phys 299:305–334, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Basak, A., Paquette, E., Zeitouni, O.: Spectrum of random perturbations of toeplitz matrices with finite symbols, (2018). preprint arXiv:1812.06207

  2. Basak, A., Paquette, E., Zeitouni, O.: Regularization of non-normal matrices by gaussian noise - the banded toeplitz and twisted toeplitz cases, Forum of Math. Sigma 7, (2019)

  3. Borthwick, D., Uribe, A.: On the pseudospectra of berezin-toeplitz operators. Meth. Appl. Anal. 10(1), 031–066 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Christiansen, T.J., Zworski, M.: Probabilistic Weyl laws for quantized Tori. Commun. Math. Phys. 299, 305–334 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Davies, E.B.: Semi-classical States for Non-Self-Adjoint Schrödinger Operators, Comm. Math. Phys, no. 200, 35–41, (1999)

  6. Davies, E.B., Hager, M.: Perturbations of Jordan matrices. J. Approx. Theory 156(1), 82–94 (2009)

    Article  MathSciNet  Google Scholar 

  7. Dencker, N., Sjöstrand, J., Zworski, M.: Pseudospectra of semiclassical (pseudo-) differential operators. Commun. Pure Appl. Math. 57(3), 384–415 (2004)

    Article  MathSciNet  Google Scholar 

  8. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series 268. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  9. Embree, M., Trefethen, L.N.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  10. Le Floch, Y.: A Brief Introduction to Berezin-toeplitz Operators on Compact kähler Manifolds. Springer, Cham (2018)

    Book  Google Scholar 

  11. Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, vol. 18, AMS, (1969)

  12. Guionnet, A., Matchett Wood, P., Zeitouni, 0.: Convergence of the spectral measure of non-normal matrices, Proc. AMS 142(2), 667–679, (2014)

  13. Hager, M.: Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle. Annales de la faculté des sciences de Toulouse Sé. 6 15(2), 243–280 (2006)

    Article  Google Scholar 

  14. Hager, M., Sjöstrand, J.: Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann. 342, 177–243 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hörmander, L.: The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften, vol. 256. Springer, New York (1983)

    Google Scholar 

  16. Kallenberg, O.: Foundations of modern probability, Probability and its Applications. Springer, New York (1997)

    MATH  Google Scholar 

  17. Latala, R.: Some estimates of norms of random matrices. Proc. Amer. Math. Soc. 133(5), 1273–1282 (2005)

    Article  MathSciNet  Google Scholar 

  18. Chapman, S.J., Trefethen, L.N.: Wave packet pseudomodes of twisted toeplitz matrices. Commun. Pure Appl. Math. LVII, 1233–1264 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis. Springer, New York (2002)

    Book  Google Scholar 

  20. Melin, A., Sjöstrand, J.: Determinants of pseudodifferential operators and complex deformations of phase space. Methods Appl. Anal. 9(2), 177–237 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Nonnenmacher, S., Zworski, M.: Distribution of resonances for open quantum maps., Comm. Math. Phys, no. 269, 311–365, (2007)

  22. Sankar, A., Spielmann, D.A., Teng, S.H.: Smoothed analysis of the condition numbers and growth factors of matrices, SIAM J. Matrix Anal. Appl. 28(2), 446–476 (2006)

    Article  MathSciNet  Google Scholar 

  23. Sjöstrand, J.: Counting zeros of holomorphic functions of exponential growth. J. Pseudodiffer. Oper. Appl. 1(1), 75–100 (2010)

    Article  MathSciNet  Google Scholar 

  24. Sjöstrand, J., Vogel, M.: General toeplitz matrices subject to gaussian perturbations, (2019). preprint arXiv:1905.10265

  25. Sjöstrand, J., Vogel, M.: Toeplitz band matrices with small random perturbations, (2019). preprint arXiv:1901.08982

  26. Sjöstrand, J., Zworski, M.: Elementary linear algebra for advanced spectral problems. Annales de l’Institute Fourier 57, 2095–2141 (2007)

    Article  MathSciNet  Google Scholar 

  27. Tao, T.: Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  28. Tao, T., Vu, V.: Smooth analysis of the condition number and the least singular value. Math. Comp. 79(272), 2333–2352 (2010). (see also the Erratum arXiv:0805.3167v3)

  29. Zworski, M.: A remark on a paper of E.B. Davies, Proc. A.M.S., no. 129, 2955–2957, (2001)

  30. Zworski, M.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138138. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Maciej Zworski for suggesting this project, to László Erdős for some very enlightening discussions and to the Institute of Science and Technology, Austria, where a part of this paper has been written, for providing a welcoming and stimulating environment. The author was supported by a CNRS Momentum grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vogel.

Additional information

Communicated by J. Marklof

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Estimate on the Smallest Singular Value

Appendix A. Estimate on the Smallest Singular Value

We present for the reader’s convenience a complex version of a result due to Sankar, Spielmann and Teng [22, Lemma 3.2], see also [28, Theorem 2.2].

Theorem 23

There exists a constant \(C>0\) such that the following holds. Let \(N\ge 2\), let \(X_0\) be an arbitrary complex \(N\times N\) matrix, and let Q be an \(N\times N\) complex Gaussian random matrix whose entries are all independent copies of a complex Gaussian random variable \(q\sim \mathcal {N}_{\mathbb {C}}(0,1)\). Then, for any \(\delta >0\)

$$\begin{aligned} \mathbf {P}\left( s_N(X_0 + \delta Q) < \delta t \right) \le C N t^2. \end{aligned}$$

The proof, which is a straightforward modification of the proof of [22, Lemma 3.2], is presented here for the reader’s convenience.

Lemma 24

There exists a \(C>0\) such that for any \(\nu \in \mathbb {C}^N\) with \(\Vert \nu \Vert =1\), we have that for any \(\tau >0\)

$$\begin{aligned} \mathbf {P}\left( \Vert (X_0 + \delta Q)^{-1}\nu \Vert > \tau \right) \le C \frac{1}{ \tau ^2 \delta ^2}. \end{aligned}$$

Proof

  1. 1.

    Since Q is a Gaussian random matrix, it is clear that the zero set of the map \(\mathbb {C}^{N\times N} \ni Q\mapsto \det (X_0 + \delta Q)\) has Lebesgue measure 0. Hence, \(X:=X_0 + \delta Q\) is almost surely invertible.

    Let U be a \(N\times N\) unitary matrix such that \(U^*e_1 = \nu \), where \(e_1\) is the unit vector in \(\mathbb {C}^N\) with 1 in the first entry, and 0 in the other entries. Write \(B=UX\) and \(B_0 = UX_0\), then, almost surely,

    $$\begin{aligned} \Vert X^{-1} \nu \Vert = \Vert X^{-1} U^*e_1\Vert = \Vert B^{-1} e_1\Vert . \end{aligned}$$

    We denote by \(\widehat{b}\) the first column of \(B^{-1}\), and by \(b_j\), \(j=1,\dots ,N\), the rows of B, hence \(\widehat{b}\cdot b_1=1\) and \(\widehat{b}\cdot b_j=0\), \(j=2,\dots , N\). Notice that the \(b_i\) are linearly independent and let t denote the unit vector which is orthogonal to the space spanned by the \(\overline{b}_j\) for \(j=2,\dots , N\). Then,

    $$\begin{aligned} \widehat{b} = ( \widehat{b} | t ) \,t, \quad \text {and } \quad ( \widehat{b} | t ) (t \cdot b_1)=1. \end{aligned}$$

    Hence, \(\Vert B^{-1} e_1\Vert = | t \cdot b_1|^{-1}\), and

    $$\begin{aligned} \mathbf {P}\left( \Vert (X_0 + \delta Q)^{-1}\nu \Vert > \tau \right) = \mathbf {P}\left( | t \cdot b_1| < \tau ^{-1} \right) . \end{aligned}$$
    (0.1)
  2. 2.

    Since U is unitary it follows that the entries of \(\delta UQ\) are independent and identically distributed complex Gaussian random variables \(\sim \mathcal {N}_{\mathbb {C}}(0,\delta ^2)\). Since t is a unit vector depending only on \(b_i\), \(i=2,\dots , N\), it follows that when fixing these row vectors, \(t \cdot b_1-\lambda \), with \(\lambda = ( B_0 t)_1\), is a complex Gaussian random variables \(\sim \mathcal {N}_{\mathbb {C}}(0, \delta ^2)\). Then,

    $$\begin{aligned} \mathbf {P}\left( | t \cdot b_1|< \tau ^{-1} \right) \le \mathbf {P}\left( | t \cdot b_1 - \lambda | < \tau ^{-1} \right) \le \frac{1}{\tau ^2 \delta ^2}, \end{aligned}$$

and we conclude the second statement of the Lemma. Here, the second inequality follows from a straightforward calculation. To see the first inequality, it is enough to show that for a complex Gaussian random variable \(u\sim \mathcal {N}_{\mathbb {C}}(0, \delta ^2)\), we have that for any \(b>0\), \(x \ge 0\),

$$\begin{aligned} \mathbf {P}\left( | x + \mathrm {Re}\,u |< b \right) \le \mathbf {P}\left( | \mathrm {Re}\,u | < b \right) . \end{aligned}$$
(0.2)

The left hand side is equal to the integral

$$\begin{aligned} I(x) = \frac{1}{\delta \sqrt{\pi }} \int _{-(x+b)}^{b-x} \mathrm {e}^{-t^2/\delta ^2} dt. \end{aligned}$$

Since

$$\begin{aligned} \frac{d}{dx}I(x) = \frac{1}{\delta \sqrt{\pi }} \left[ \mathrm {e}^{-(x+b)^2/\delta ^2} - \mathrm {e}^{-(b-x)^2/\delta ^2} \right] \le 0, \end{aligned}$$

the map \(x\mapsto I(x)\) is decreasing, so (0.2) holds, as it is trivially true for \(x=0\). \(\square \)

Lemma 25

There exists a constant \(C>1\) such that the following holds. Let \(N\ge 2\), and let \(\nu \) be a uniformly distributed random unit vector in \(\mathbb {C}^N\). Then, for any \(0 < c \le 1\)

$$\begin{aligned} \mathbf {P}\left( |\nu _1| \ge \sqrt{\frac{c}{CN}} \right) \ge (1-\mathrm {e}^{-2}) \mathbf {P}\left( |z| > \sqrt{c}\right) , \end{aligned}$$

where \(z\sim \mathcal {N}_{\mathbb {C}}(0,1)\).

Proof

Let \(z\in \mathbb {C}^N\) be a random vector whose entries \(z_j\sim \mathcal {N}_{\mathbb {C}}(0,1)\), \(j=1,\dots ,N\) are independent and identically distributed complex Gaussian random variables. Then,

$$\begin{aligned} \nu _*(d\mathbf {P}) = \left( \frac{z}{\Vert z\Vert }\right) _*(d\mathbf {P}). \end{aligned}$$

Writing \(z=(z_1,z')\), we get that

$$\begin{aligned} \mathbf {P}\left( |\nu _1| \ge \sqrt{\frac{c}{C N}} \right)&= \mathbf {P}\left( \frac{|z_1^2|}{\Vert z\Vert ^2} \ge \frac{c}{CN} \right) \\&= \mathbf {P}\left( \frac{(CN-1)|z_1^2|}{\Vert z'\Vert ^2} \ge \frac{(CN-1)c}{CN-c} \right) \\&\ge \mathbf {P}\left( \frac{(CN-1)|z_1^2|}{\Vert z'\Vert ^2} \ge c \right) \\&\ge \mathbf {P}\left( \Vert z'\Vert ^2 \le (CN-1) \right) \mathbf {P}\left( |z_1^2|\ge c \right) . \end{aligned}$$

Since \(z'\) is a complex Gaussian random vector in \(\mathbb {C}^{N-1}\) with independent and identically distributed entries \(\sim \mathcal {N}_{\mathbb {C}}(0,1)\), we get from Markov’s inequality that for \(C>1\) large enough

$$\begin{aligned} \mathbf {P}\left( \Vert z'\Vert ^2 \le (CN-1) \right) \ge 1 -\mathrm {e}^{-N}, \end{aligned}$$

and the statement of the Lemma follows. \(\square \)

Proof of Theorem 23

Let \(\nu \) be a uniformly distributed random unit vector in \(\mathbb {C}^N\). By Lemma 24 we know that for any \(\tau >0\)

$$\begin{aligned} \mathbf {P}\left( \Vert (X_0 + \delta Q)^{-1}\nu \Vert > \tau \right) \le C \frac{1}{ \tau ^2 \delta ^2}. \end{aligned}$$
(0.3)

Write \(X:=X_0 + \delta Q\), and let u be the unit eigenvector of \(XX^*\) corresponding to its smallest eigenvalue \(t_1^2 \ge 0\), i.e.

$$\begin{aligned} XX^* u = t_1^2 u. \end{aligned}$$
(0.4)

Then, almost surely,

$$\begin{aligned} \Vert X^{-1} u\Vert = t_1^{-1}\Vert u \Vert = \Vert X^{-1}\Vert . \end{aligned}$$
(0.5)

Writing \(\nu = \nu _0 u + \nu ^{\perp }\), with \(\nu _0=(\nu | u)\) and \(\nu ^{\perp }\) orthogonal to u, we see that, almost surely,

$$\begin{aligned} \Vert X^{-1} \nu \Vert ^2&= ( (XX^*)^{-1} \nu _0 u + \nu ^{\perp }| \nu _0 u + \nu ^{\perp }) \\&= |\nu _0|^2 ( (XX^*)^{-1} u |u ) +( (XX^*)^{-1} \nu ^{\perp } |\nu ^{\perp }) \\&\ge |\nu _0|^2\Vert X^{-1}\Vert ^2. \end{aligned}$$

Let \(C>1\) be as in Lemma 25. Then, using the above, we get that for any \(0 < c\le 1\) and any \(\tau >0\),

$$\begin{aligned} \mathbf {P}\left( \Vert X^{-1} \nu \Vert> \tau \sqrt{\frac{c}{C N}} \right)&\ge \mathbf {P}\left( |\nu _0|\Vert X^{-1}\Vert> \tau \sqrt{\frac{c}{C N}} \right) \nonumber \\&\ge \mathbf {P}\left( \Vert X^{-1}\Vert> \tau \text { and } |\nu _0|> \sqrt{\frac{c}{C N}}\right) \nonumber \\&\ge \mathbf {P}\left( \Vert X^{-1}\Vert> \tau \right) \min \limits _{ Q: \Vert X^{-1}\Vert> \tau } \mathbf {P}\left( |\nu _0| > \sqrt{\frac{c}{C N}} \right) . \end{aligned}$$
(0.6)

Since the distribution of \(\nu \) is invariant a under unitary change of variables, we may express \(\nu \) in an orthonormal basis of \(\mathbb {C}^N\) which has u as its first vector, wherefore the first component of \(\nu \) is \((\nu |u)\). Thus, using Lemma 25 we obtain from (0.6) that

$$\begin{aligned} \mathbf {P}\left( \Vert X^{-1} \nu \Vert> \tau \sqrt{\frac{c}{C N}} \right) \ge \mathbf {P}\left( \Vert X^{-1}\Vert> \tau \right) (1-\mathrm {e}^{-2}) \mathbf {P}\left( |z| > \sqrt{c}\right) , \end{aligned}$$

where \(z \sim \mathcal {N}_{\mathbb {C}}(0,1)\) is a complex Gaussian random variable. This, together with (0.3), then yields that there exists a constant \(C>0\) such that

$$\begin{aligned} \mathbf {P}\left( \Vert X^{-1}\Vert> \tau \right) \le \frac{CN}{c\,\mathbf {P}\left( |z| > \sqrt{c}\right) \tau ^2 \delta ^2}. \end{aligned}$$

Since, we may choose \(c \in ]0,1]\), we take \(c=1\), which gives that \(c\,\mathbf {P}\left( |z| > \sqrt{c}\right) = e^{-1}\). Recall that \(\Vert X^{-1} \Vert = s_N(X)^{-1}\), so taking \(t =(\tau \delta )^{-1}\), we deduce that there exists a constant \(C>0\) such that for any \(N\ge 2\)

$$\begin{aligned} \mathbf {P}\left( s_N(X) < t\delta \right) \le CNt^2. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, M. Almost Sure Weyl Law for Quantized Tori. Commun. Math. Phys. 378, 1539–1585 (2020). https://doi.org/10.1007/s00220-020-03797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03797-y

Navigation