Skip to main content
Log in

Critical Behavior of Non-intersecting Brownian Motions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study n non-intersecting Brownian motions corresponding to initial configurations which have a vanishing density in the large n limit at an interior point of the support. It is understood that the point of vanishing can propagate up to a critical time, and we investigate the nature of the microscopic space-time correlations near the critical point and critical time. We show that they are described either by the Pearcey process or by the Airy line ensemble, depending on whether a simple integral related to the initial configuration vanishes or not. Since the Airy line ensemble typically arises near edge points of the macroscopic density, its appearance in the interior of the spectrum is surprising. We explain this phenomenon by showing that, even though there is no gap of macroscopic size near the critical point, there is with high probability a gap of mesoscopic size. Moreover, we identify a path which follows the Airy\(_2\) process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adler, M., Delépine, J., van Moerbeke, P.: Dyson’s nonintersecting Brownian motions with a few outliers. Commun. Pure Appl. Math. 62(3), 334–395 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Adler, M., Johansson, K., van Moerbeke, P.: Double Aztec diamonds and the tacnode process. Adv. Math. 252, 518–571 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Ajanki, O., Erdős, L., Krüger, T.: Quadratic vector equations on complex upper half-plane (2015). arXiv:1506.05095 [math.PR]

  4. Ajanki, O., Erdős, L., Krüger, T.: Singularities of solutions to quadratic vector equations on the complex upper half-plane. Commun. Pure Appl. Math. 70(9), 1672–1705 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Alt, J., Erdős, L., Krüger, T., Schröder, D.: Correlated random matrices: band rigidity and edge universality (2018). arXiv:1804.07744 [math.PR]

  6. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, Vol. 118. Cambridge Studies in Advanced Mathematics, pp. 14–492. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  7. Aptekarev, A.I., Bleher, P.M., Kuijlaars, A.B.J.: Large n limit of Gaussian random matrices with external source. II. Commun. Math. Phys. 259(2), 367–389 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Biane, P.: On the free convolution with a semi-circular distribution. Indiana Univ. Math. J. 46(3), 705–718 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Bleher, P.M., Kuijlaars, A.B.J.: Large n limit of Gaussian random matrices with external source. III. Double scaling limit. Commun. Math. Phys. 270(2), 481–517 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Bleher, P., Kuijlaars, A.B.J.: Large \(n\) limit of Gaussian random matrices with external source. I. Commun. Math. Phys. 252(1–3), 43–76 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Borodin, A., Kuan, J.: Asymptotics of Plancherel measures for the infinite dimensional unitary group. Adv. Math. 219(3), 894–931 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Borodin, A., Rains, E.M.: Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121(3–4), 291–317 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bourgade, P., Erdős, L., Yau, H.-T.: Edge universality of beta ensembles. Commun. Math. Phys. 332(1), 261–353 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Brézin, E., Hikami, S.: Level spacing of random matrices in an external source. Phys. Rev. E (3) 58, Part A(6), 7176–7185 (1998)

    ADS  MathSciNet  Google Scholar 

  15. Brézin, E., Hikami, S.: Spectral form factor in a random matrix theory. Phys. Rev. E (3) 55(4), 4067–4083 (1997)

    ADS  MathSciNet  Google Scholar 

  16. Brézin, E., Hikami, S.: Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E (3) 57(4), 4140–4149 (1998)

    ADS  MathSciNet  Google Scholar 

  17. Capitaine, M., Péché, S.: Fluctuations at the edges of the spectrum of the full rank deformed GUE. Probab. Theory Relat. Fields 165(1–2), 117–161 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Cipolloni, G., Erdős, L., Krüger, T., Schröder, D.: Cusp universality for random matrices, II: the real symmetric case. Pure Appl. Anal. 1(4), 615–707 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Claeys, T., Kuijlaars, A.B.J., Liechty, K., Wang, D.: Propagation of singular behavior for Gaussian perturbations of random matrices. Commun. Math. Phys. 362(1), 1–54 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Claeys, T., Neuschel, T., Venker, M.: Boundaries of sine kernel universality for Gaussian perturbations of Hermitian matrices. Random Mat. Theory Appl. 8(3), 1950011 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Corwin, I.: Kardar–Parisi–Zhang universality. Not. Am. Math. Soc. 63(3), 230–239 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. Invent. Math. 195(2), 441–508 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Dauvergne, D., Nica, M., Virág, B.: Uniform convergence to the Airy line ensemble (July 2019). arXiv:1907.10160 [math.PR]

  24. Dauvergne, D., Virág, B.: Basic properties of the Airy line ensemble (Dec. 2018) arXiv:1812.00311 [math.PR]

  25. Duse, E., Johansson, K., Metcalfe, A.: The cusp-Airy process. Electron. J. Probab. 21, 57 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Duse, E., Metcalfe, A.: Universal edge uctuations of discrete interlaced particle systems. Ann. Math. Blaise Pascal 25(1), 75–197 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Erdős, L., Krüger, T., Schröder, D.: Cusp universality for random matrices I: local law and the complex Hermitian case (Sept. 2018). arXiv:1809.03971 [math.PR]

  29. Erdős, L., Péché, S., Ramírez, J.A., Schlein, B., Yau, H.-T.: Bulk universality for Wigner matrices. Commun. Pure Appl. Math. 63(7), 895–925 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Erdős, L., Yau, H.-T.: A Dynamical Approach to Random Matrix Theory. Vol. 28. Courant Lecture Notes in Mathematics, pp. 9+226. Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence (2017)

  31. Eynard, B., Mehta, M.L.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31(19), 4449–4456 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Forrester, P.J., Nagao, T., Honner, G.: Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nucl. Phys. B 553(3), 601–643 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Geudens, D., Zhang, L.: Transitions between critical kernels: from the tacnode kernel and critical kernel in the two-matrix model to the Pearcey kernel. Int. Math. Res. Not. IMRN 14, 5733–5782 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Gorin, V., Petrov, L.: Universality of local statistics for noncolliding random walks. Ann. Probab. 47(5), 2686–2753 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Grabiner, D.J.: Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré Probab. Stat. 35(2), 177–204 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242(1–2), 277–329 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Johansson, K.: Non-colliding Brownian motions and the extended tacnode process. Commun. Math. Phys. 319(1), 231–267 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Johansson, K.: On some special directed last-passage percolation models In: Integrable Systems and Random Matrices, vol. 458, pp. 333–346. Contemp. Math. Amer. Math. Soc., Providence (2008)

  39. Johansson, K.: The arctic circle boundary and the Airy process. Ann. Probab. 33(1), 1–30 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Johansson, K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys. 215(3), 683–705 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Katori, M., Tanemura, H.: Markov property of determinantal processes with extended sine, Airy, and Bessel kernels. Markov Process. Relat. Fields 17(4), 541–580 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. 293(2), 469–497 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Kriecherbauer, T., Schubert, K., Schüler, K., Venker, M.: Global asymptotics for the Christoffel–Darboux kernel of random matrix theory. Markov Process. Relat. Fields 21, Part 2(3), 639–694 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Kriecherbauer, T., Krug, J.: A Pedestrian’s view on interacting particle systems, KPZ universality and random matrices. J. Phys. A 43(40), 403001 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Kriecherbauer, T., Venker, M.: Edge statistics for a class of repulsive particle systems. Probab. Theory Relat. Fields 170(3–4), 617–655 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Lee, J.O., Schnelli, K.: Edge universality for deformed Wigner matrices. Rev. Math. Phys. 27(8), 1550018 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Lee, J.O., Schnelli, K., Stetler, B., Yau, H.-T.: Bulk universality for deformed Wigner matrices. Ann. Probab. 44(3), 2349–2425 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Liechty, K., Wang, D.: Nonintersecting Brownian bridges between reflecting or absorbing walls. Adv. Math. 309, 155–208 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Liechty, K., Wang, D.: Nonintersecting Brownian motions on the unit circle. Ann. Probab. 44(2), 1134–1211 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Pastur, L., Shcherbina, M.: On the edge universality of the local eigenvalue statistics of matrix models. Mat. Fiz. Anal. Geom. 10(3), 335–365 (2003)

    MathSciNet  MATH  Google Scholar 

  51. Petrov, L.: Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes. Probab. Theory Relat. Fields 160(3–4), 429–487 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process In: Dedicated to David Ruelle and Yasha Sinai on the Occasion of Their 65th birthdays, vol. 108(5–6), pp. 1071–1106 (2002)

  53. Shcherbina, T.: On universality of bulk local regime of the deformed Gaussian unitary ensemble. Zh. Mat. Fiz. Anal. Geom. 5(4), 396–433 (2009)

    MathSciNet  Google Scholar 

  54. Shcherbina, T.: On universality of local edge regime for the deformed Gaussian unitary ensemble. J. Stat. Phys. 143(3), 455–481 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys. 207(3), 697–733 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Spohn, H.: The Kardar–Parisi–Zhang equation: a statistical physics perspective In: Stochastic Processes and Random Matrices, pp. 177–227. Oxford University Press, Oxford (2017)

  57. Tracy, C.A., Widom, H.: The Pearcey process. Commun. Math. Phys. 263(2), 381–400 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mireille Capitaine, Giorgio Cipolloni, Makoto Katori, Torben Krüger, Sandrine Péché, Dominik Schröder and Dong Wang for valuable discussions and an anonymous referee for valuable comments. T.C. was supported by the Fonds de la Recherche Scientifique-FNRS under EOS Project O013018F. T.N. and M.V. have been supported by the DFG through the CRC 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Claeys.

Additional information

Communicated by S. Chatterjee

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Space-Time Correlation Functions

Appendix A. Space-Time Correlation Functions

In this appendix, we present some background on the space-time correlation functions of the NIBM process.

We start by recalling that by definition, the transition density of the Markov process \((X(t))_t\) can be obtained as the joint probability density function of the eigenvalues of

$$\begin{aligned} M\mapsto Z_n^{-1}e^{-\frac{n}{2t}{{\,\mathrm{Tr}\,}}(M(0)-M)^2}, \end{aligned}$$

where \(Z_n\) is the normalization constant. It is well-known [14, 15, 40] that employing the Harish–Chandra/Itzykson–Zuber formula, the transition density \(\mathbf{x }^{(1)}\mapsto p_t(\mathbf{x }^{(0)};\mathbf{x }^{(1)})\) of \((X(t))_t\) (given X(0)) can then be computed as

$$\begin{aligned} p_t(\mathbf{x }^{(0)};\mathbf{x }^{(1)})=\left( \frac{n}{2\pi t}\right) ^{\frac{n}{2}}\frac{\prod _{i<j} (x^{(1)}_j-x_i^{(1)})}{\prod _{i<j} (x^{(0)}_j-x_i^{(0)})}\det \left( e^{-\frac{n}{2t}(x_i^{(0)}-x_j^{(1)})^2}\right) _{1\le i,j\le n}, \end{aligned}$$

where \(\mathbf{x }^{(i)}=(x^{(i)}_1,\ldots ,x_n^{(i)})\in W_n:=\{\mathbf{x }\in {\mathbb {R}}^n:x_1\le \ldots \le x_n\},\, i=0,1\) and \(\mathbf{x }^{(0)}:=X(0)\). A priori, this density is only defined for distinct initial values \(x_j^{(0)}\) but this condition is readily removed by invoking continuity arguments. By the Chapman–Kolmogorov equations, the finite-dimensional distributions of \((X(t))_t\), i.e. the joint distributions of all finite collections of vectors \(X(t_1),\ldots ,X(t_k)\in {\mathbb {R}}^{n}\) for any choice \(0=t_0<t_1<\ldots <t_k\), \(k\in {\mathbb {N}}\), have the densities

$$\begin{aligned}&W_n^k\ni (\mathbf{x }^{(1)},\ldots ,\mathbf{x }^{(k)})\mapsto p_{t_1\dots ,t_k}(\mathbf{x }^{(0)};\mathbf{x }^{(1)},\ldots ,\mathbf{x }^{(k)})\\&\quad :=p_{t_1}(\mathbf{x }^{(0)};\mathbf{x }^{(1)})p_{t_2-t_1}(\mathbf{x }^{(1)};\mathbf{x }^{(2)})\dots p_{t_{k}-t_{k-1}}(\mathbf{x }^{(k-1)};\mathbf{x }^{(k)})\\&\quad =\left( \prod _{l=1}^k\frac{n}{2\pi (t_l-t_{l-1})}\right) ^{\frac{n}{2}}\frac{\prod _{i<j} (x^{(k)}_j-x_i^{(k)})}{\prod _{i<j} (x^{(0)}_j-x_i^{(0)})}\prod _{l=1}^k\det \left( e^{-\frac{n}{2(t_l-t_{l-1})}(x^{(l-1)}_i-x^{(l)}_j)^2}\right) _{1\le i,j\le n}. \end{aligned}$$

An important property of NIBM is the determinantality of its correlation functions. In order to properly introduce these functions, we consider the symmetrized density \({\widehat{p}}_{t_1\dots ,t_k}(\mathbf{x }^{(0)};\mathbf{x }^{(1)},\ldots ,\mathbf{x }^{(k)})\) on \(\left( {\mathbb {R}}^{n}\right) ^k\), defined for \(\mathbf{x }^{(1)},\ldots ,\mathbf{x }^{(k)}\in {\mathbb {R}}^n\)

$$\begin{aligned} {\widehat{p}}_{t_1\dots ,t_k}(\mathbf{x }^{(0)};\mathbf{x }^{(1)},\ldots ,\mathbf{x }^{(k)}):=\frac{1}{(n!)^k} p_{t_1\dots ,t_k}(\mathbf{x }^{(0)};\mathbf{x }^{(1)}_\le ,\ldots ,\mathbf{x }^{(k)}_\le ), \end{aligned}$$
(A.1)

where for \(\mathbf{x }^{(i)}\in {\mathbb {R}}^n\), \(\mathbf{x }^{(i)}_\le \) denotes the unique permuted vector built from \(\mathbf{x }^{(i)}\) that lies in \(W_n\). Now, the space-time correlation functions are for any collection of integer numbers \(1\le m_1,\ldots ,m_k\le n\) defined as

$$\begin{aligned}&\rho ^{(n)}_{t_1,\ldots ,t_k}(\mathbf{x }^{(1)}_{m_1},\ldots ,\mathbf{x }^{(k)}_{m_k}):=\frac{(n!)^k}{\prod _{l=1}^k(n-m_l)!}\\&\quad \times \int \limits _{{\mathbb {R}}^{kn-\sum _{j=1}^km_k}} {\widehat{p}}_{t_1,\ldots ,t_k}(\mathbf{x }^{(1)},\ldots ,\mathbf{x }^{(k)})dx^{(1)}_{m_1+1}\dots dx^{(1)}_{n}\dots dx^{(k)}_{m_k+1}\dots dx^{(k)}_{n}. \end{aligned}$$

The correlation functions are multiples of the marginal densities of \({{\widehat{p}}}_{t_1\dots ,t_k}(\mathbf{x }^{(0)};\cdot ,\ldots ,\cdot )\) and allow to express the expectation of statistics in terms of integrals. Note that due to the symmetrization, the correlation functions do not directly describe individual paths of the process, i.e. \((x_1,x_2)\mapsto \rho ^{(n)}_{t}(x_1,x_2)\) does not describe the correlations of the two smallest paths but rather the correlations of paths around the point \(x_1\) and paths around \(x_2\) (at time t). However, statistics of special paths, e.g. those with gaps to one side, admit an effective representation in terms of correlation functions, as for instance used in the proof of Theorem 1.4. Alternatively, one may interpret the correlation functions as joint intensities of the time-dependent point process \(\sum _{j=1}^n\delta _{X_j(t)}\).

The structure of the density (A.1) being a product of \(k+2\) determinants in the variables \(\mathbf{x }^{(0)},\ldots ,\mathbf{x }^{(k)}\) allows for an application of the Eynard–Mehta theorem [12, 31] that yields the determinantality of the correlation functions, i.e. the ability to express the correlation functions as determinants of matrices given by a certain kernel function. This leads to the formulas (1.12)–(1.13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claeys, T., Neuschel, T. & Venker, M. Critical Behavior of Non-intersecting Brownian Motions. Commun. Math. Phys. 378, 1501–1537 (2020). https://doi.org/10.1007/s00220-020-03823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03823-z

Navigation