Skip to main content
Log in

Hodge and Prym Tau Functions, Strebel Differentials and Combinatorial Model of \({\mathcal {M}}_{g,n}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The goal of the paper is to apply the theory of integrable systems to construct explicit sections of line bundles over the combinatorial model of the moduli space of pointed Riemann surfaces based on Strebel differentials. These line bundles are tensor products of the determinants of the Hodge or Prym vector bundles with the standard tautological line bundles \(\mathcal {L}_j\), and the sections are constructed in terms of tau functions. The combinatorial model is interpreted as the real slice of a complex analytic moduli space of quadratic differentials where the phase of each tau-function provides a section of a circle bundle. The phase of the ratio of the Prym and Hodge tau functions gives a section of the \(\kappa _1\)-circle bundle. By evaluating the increment of the phase around co-dimension 2 sub-complexes, we identify the Poincaré dual cycles to the Chern classes of the corresponding line bundles: they are expressed explicitly as combination of Witten’s cycle \(W_{5} \) and Kontsevich’s boundary. This provides combinatorial analogues of Mumford’s relations on \({\mathcal {M}}_{g,n}\) and Penner’s relations in the hyperbolic combinatorial model. The free homotopy classes of loops around \(W_{5} \) are interpreted as pentagon moves while those of loops around Kontsevich’s boundary as combinatorial Dehn twists. Throughout the paper we exploit the classical description of the combinatorial model in terms of Strebel differentials, parametrized in terms of period, or homological coordinates; we show that they provide Darboux coordinates for the symplectic structure introduced by Kontsevich. We also express the latter as the intersection pairing in the odd homology of the canonical double cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abikoff, W.: The Real Analytic Theory of Teichmüller Space. Lecture Notes in Mathematics, vol. 820. Springer, Berlin (1980)

  2. Arbarello, E., Cornalba, M.: Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves. J. Algebr. Geom. 5(4), 705–749 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Arbarello, E., Cornalba, M., Griffiths, P.: Geometry of Algebraic Curves, Grundlehren der mathematischen Wissenshaften, 268, vol. 2. Springer, Berlin (2011)

  4. Basok, M.: Tau function and moduli of spin curves. Int. Math. Res. Not. 20, 10095–10117 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bertola, M., Korotkin, D., Norton, C.: Symplectic geometry of the moduli space of projective structures in homological coordinates. Invent. Math. 210(3), 759–814 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bertola, M., Korotkin, D.: Discriminant circle bundles over local models of Strebel graphs and Boutroux curves. Theor. Math. Phys. 197, 1535–1571 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Bottacin, F.: Symplectic geometry on moduli spaces of stable pairs. Ann. Sci. Ecole Norm. Sup. (4) 28(4), 391–433 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Chekhov, L., Fock, V.: Quantum Teichmüller spaces. Theor. Math. Phys. 120(3), 1245–1259 (1999). arXiv:math/9908165

    MATH  Google Scholar 

  9. Cornalba, M., Harris, J.: Divisor classes associated to families of stable varieties, with applications to the moduli space of curves. Ann. Sci. Ec. Norm. Super. 4(21), 455–475 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Dubrovin, B.: Painlevé Transcendents in Two-dimensional Topological Field Theory, The Painlevé property, 287–412 CRM Ser. Math. Phys. Springer, New York (1999)

    Google Scholar 

  11. Ekedahl, T., Lando, S., Shapiro, M., Vainshtein, A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146, 297–327 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Eskin, A., Kontsevich, M., Zorich, A.: Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmller geodesic flow. Publ. Math. Inst. Hautes Tudes Sci. 120, 207–333 (2014)

    MATH  Google Scholar 

  13. Eynard, B., Kokotov, A., Korotkin, D.: Genus one contribution to free energy in Hermitian two-matrix model. Nucl. Phys. B 694, 443–472 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Farb, B., Margalit, D.: A Primer on Mapping Class Groups, p. 472. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  15. Farkas, G., Verra, A.: The geometry of the moduli space of odd spin curves. Ann. Math. 180(3), 927–970 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Griffiths, P., Harris, G.: Principles of Algebraic Geometry, p. 813. Wiley, New York (1978)

    MATH  Google Scholar 

  17. Harer, J.: The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math. 84(1), 157–176 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Hitchin, N.: The self-duality equations on a Riemann surface. Proc. LMS 55(3), 59–126 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Igusa, K.: Combinatorial Miller–Morita–Mumford classes and Witten cycles. Algebr. Geom. Topol. 4, 473–520 (2004)

    MathSciNet  MATH  Google Scholar 

  20. John, D.: FayTheta Functions on Riemann Surfaces. Lecture Notes in Mathematics, vol. 352, p. 137. Springer, Berlin (1973)

    Google Scholar 

  21. John, D.: Fay Kernel functions, analytic torsion, and moduli spaces. Mem. Am. Math. Soc. 96(464), 123 (1992)

    ADS  MATH  Google Scholar 

  22. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. Physica 2 D, 306–352 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Kalla, C., Korotkin, D.: Baker–Akhiezer spinor kernel and tau-functions on moduli spaces of meromorphic differentials. Commun. Math. Phys. 331, 1191–1235 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Kazarian, M.: KP hierarchy for Hodge integrals. Adv. Math. 221, 1–21 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Kokotov, A., Korotkin, D.: Tau-functions on spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume, math.SP/0405042, preprint No. 46 of Max-Planck Institut for Mathematics in Science, Leipzig (2004)

  26. Kokotov, A., Korotkin, D.: Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray–Singer formula. J. Differ. Geom. 82, 35–100 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Kokotov, A., Korotkin, D., Zograf, P.: Isomonodromic tau function on the space of admissible covers. Adv. Math. 227(1), 586–600 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Kokotov, A., Korotkin, D.: On \(G\)-function of Frobenius manifolds related to Hurwitz spaces. Int. Math. Res. Not. 2004(7), 343–360 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Korotkin, D., Sauvaget, A., Zograf, P.: Tau functions, Prym-Tyurin classes and loci of degenerate differentials. Math. Ann. 375(1–2), 213–246 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Korotkin, D., Zograf, P.: Tau function and moduli of differentials. Math. Res. Lett. 18(3), 447–458 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Korotkin, D., Zograf, P.: Tau function and the Prym class. In: Dzhamay, A., Maruno, K., Pierce, V.U. (eds.) Algebraic and Geometric Aspects of Integrable Systems and Random Matrices. Contemporary Mathematics, vol. 593, pp. 241–261. American Mathematical Society, Providence, RI (2013)

    MATH  Google Scholar 

  32. Kokotov, A., Korotkin, D.: Isomonodromic tau function of Hurwitz–Frobenius manifolds and its applications. IMRN 2006, 1–34 (2006)

    MATH  Google Scholar 

  33. Korotkin, D.: Solution of an arbitrary matrix Riemann–Hilbert problem with quasi-permutation monodromy matrices. Math. Ann. 329(2), 335–364 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Lando, S., Zvonkin, A.: Graphs on Surfaces and Their Applications With an Appendix by Don B. Zagier. Encyclopaedia of Mathematical Sciences, 141. Low-Dimensional Topology, II. Springer, Berlin (2004)

    MATH  Google Scholar 

  36. Looijenga, E.: Cellular Decompositions of Compactified Moduli Spaces of Pointed Curves, The Moduli Space of Curves, (Texel Island, 1994), pp. 369–400. Birkhäuser Boston, Boston, MA (1995)

  37. Malgrange, B.: Sur les déformations isomonodromiques. I: singularités réguliéres in Séminaire ENS. Progress in Mathematics. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  38. Markman, E.: Spectral curves and integrable systems. Compos. Math. 93, 255–290 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Mondello, G.: Combinatorial classes on \(M_{g, n}\) are tautological. Int. Math. Res. Not. 44, 2329–2390 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Mondello, G.: Riemann surfaces, ribbon graphs and combinatorial classes. In: Handbook of Teichmüller Theory, vol. II, pp. 151–215. IRMA Lectures in Mathematics and Theoretical Physics, vol 13. European Mathematical Society, Zürich (2009)

  41. Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7, 447–453 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Pandharipande, R.: A calculus for the moduli space of curves. In: Proceedings of Symposia in Pure Mathematics, vol. 97.1, pp. 459–487. Algebraic geometry, Salt Lake City, Providence, RI (2018)

  43. Penner, R.: The Poincaré dual of the Weil–Petersson Kähler two-form. Commun. Anal. Geom. 1(1), 43–69 (1993)

    MathSciNet  MATH  Google Scholar 

  44. Seiberg, N., Witten, E.: Monopole condensation, and confinement In N=2 supersymmetric Yang–Mills theory. Nucl. Phys. B 426, 19–52 (1994)

    ADS  MATH  Google Scholar 

  45. Strebel, K.: Quadratic Differentials. Springer, Berlin (1984)

    MATH  Google Scholar 

  46. Takhtajan, L., Zograf, P.: A local index theorem for families of \(\bar{\partial }\)-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces. Commun. Math. Phys. 137(2), 399–426 (1991)

    ADS  Google Scholar 

  47. Witten, E.: Two-dimensional gravity and intersection theory on moduli spaces. Surv. Differ. Geom. 1, 243–310 (1991)

    MathSciNet  MATH  Google Scholar 

  48. Zvonkine, D.: An introduction to moduli spaces of curves and their intersection theory. In: Handbook of Teichmüller Theory, IRMA Lectures in Mathematics and Theoretical Physics, 17, vol. III, pp. 667–716. European Mathematical Society, Zürich (2012)

Download references

Acknowledgements

The authors thank Peter Zograf for numerous illuminating discussions. We thank Sam Grushevsky and Martin Möller for comments on the formula (1.2). The work of M.B. is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2016-06660. The work of D.K. was supported in part by the Natural Sciences and Engineering Research Council of Canada grant RGPIN/3827-2015 and by Alexander von Humboldt Stiftung. Both authors are partially supported by the FQRNT grant “Matrices Aléatoires, Processus Stochastiques et Systèmes Intégrables” (2013–PR–166790). Both authors thank the Institut Mittag–Leffler for hospitality during the workshop “Moduli Integrability and Dynamics”, where parts of the paper where written. D.K. thanks Max-Planck Institute for Gravitational Physics in Golm (Albert Einstein Institute) and SISSA (Trieste) for hospitality and support during preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bertola.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertola, M., Korotkin, D. Hodge and Prym Tau Functions, Strebel Differentials and Combinatorial Model of \({\mathcal {M}}_{g,n}\). Commun. Math. Phys. 378, 1279–1341 (2020). https://doi.org/10.1007/s00220-020-03819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03819-9

Navigation