Skip to main content
Log in

Synthesis of poly(diethylaminoethyl methacrylate-co-2,2,6,6-tetramethyl-4-piperidyl methacrylate)s and their segmental motion study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) is a pH-sensitive polymer, while a few recent studies have shown it to possess temperature responsiveness as well. In this article, poly(2-(diethylamino)ethyl methacrylate-co-2,2,6,6-tetramethyl-4-piperidyl methacrylate)s, DEA-TMPMs, were synthesized. The TMPM moieties in DEA-TMPMs were subsequently oxidized with hydrogen peroxide to obtain poly(2-(diethylamino)ethyl methacrylate-co-2,2,6,6-tetramethylpiperidine-1-oxyl methacrylate), DEA-TMPs, having nitroxide radicals on the polymer chains. DEA-TMPMs were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, differential scanning calorimetry and thermogravimetry techniques, whereas DEA-TMPs were analyzed by Fourier transform infrared spectroscopy, cyclic voltammetry, and electron paramagnetic resonance (EPR) spectroscopy. The results showed that at low pH, the rotational mobility of nitroxide radicals was reduced as EPR spectra mostly consisted of slow-motion component. This slow-motion component in the EPR spectra remained unchanged below neutral pH. These results indicated a sort of interaction among nitroxide radicals and protonated amine groups of DEAEMA monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

References

  1. Chen Q, Li S, Feng Z, Wang M, Cai C, Wang J, Zhang L (2017) Poly(2-(diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release. Int J Nanomed 12:6857–6870

    CAS  Google Scholar 

  2. Shahalom S, Tong T, Emmett S, Saunders BR (2006) Poly(DEAEMA-co-PEGMA): a new pH-responsive comb copolymer stabilizer for emulsions and dispersions. Langmuir 22:8311–8317

    PubMed  CAS  Google Scholar 

  3. Gan L-H, Ravi P, Mao BW, Tam K-C (2003) Controlled/living polymerization of 2-(diethylamino)ethyl methacrylate and its block copolymer with tert-butyl methacrylate by atom transfer radical polymerization. J Polym Sci A Polym Chem 41:2688–2695

    CAS  Google Scholar 

  4. Guo S, Zhang Q, Wang D, Wang L, Lin F, Wilson P, Haddleton DM (2017) Bioinspired coating of TiO2 nanoparticles with antimicrobial polymers by Cu(0)-LRP: grafting to vs. grafting from. Polym Chem 8:6570–6580

    CAS  Google Scholar 

  5. Santos DES, Li D, Ramstedt M, Gautrot JE, Soares TA (2019) Conformational dynamics and responsiveness of weak and strong polyelectrolyte brushes: atomistic simulations of poly(dimethyl aminoethyl methacrylate) and poly(2-(methacryloyloxy)ethyl trimethylammonium chloride). Langmuir 35:5037–5049

    PubMed  CAS  Google Scholar 

  6. Lee AS, Bütün V, Vamvakaki M, Armes SP, Pople JA, Gast AP (2002) Structure of pH-dependent block copolymer micelles: charge and ionic strength dependence. Macromolecules 35:8540–8551

    CAS  Google Scholar 

  7. Park J-S, Lim Y-B, Kwon Y-M, Jeong B, Choi YH, Kim SW (1999) Liposome fusion induced by pH-sensitive copolymer: poly(4-vinylpyridine-co-N,N′-diethylaminoethyl methacrylate). J Polym Sci A Polym Chem 37:2305–2309

    CAS  Google Scholar 

  8. Manganiello MJ, Cheng C, Convertine AJ, Bryers JD, Stayton PS (2012) Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials 33:2301–2309

    PubMed  CAS  Google Scholar 

  9. Izumi T, Hirata M (1986) Interactions of water-soluble polymers with small molecules II: poly(2-diethylaminoethyl methacrylate)-methyl orange and its homolog systems at different temperatures. Colloid Polym Sci 264:756–763

    CAS  Google Scholar 

  10. Izumi T, Takahashi K, Hirata M (1986) Interactions of water-soluble polymers with small molecules I: poly(2-diethylaminoethyl methacrylate)-orange II and ethyl orange systems. Colloid Polym Sci 264:748–755

    CAS  Google Scholar 

  11. Kirwan LJ, Papastavrou G, Borkovec M, Behrens SH (2004) Imaging the coil-to-globule conformational transition of a weak polyelectrolyte by tuning the polyelectrolyte charge density. Nano Lett 4:149–152

    CAS  Google Scholar 

  12. Wang X, Liu G, Zhang G (2011) Conformational behavior of grafted weak polyelectrolyte chains: effects of counterion condensation and nonelectrostatic anion adsorption. Langmuir 27:9895–9901

    PubMed  CAS  Google Scholar 

  13. Araki T (2016) Conformational changes of polyelectrolyte chains in solvent mixtures. Soft Matter 12:6111–6119

    PubMed  CAS  Google Scholar 

  14. Farah S, Aviv O, Laout N, Ratner S, Beyth N, Domb AJ (2015) Quaternary ammonium poly(diethylaminoethyl methacrylate) possessing antimicrobial activity. Colloids Surf B Biointerfaces 128:608–613

    PubMed  CAS  Google Scholar 

  15. Pikabea A, Ramos J, Forcada J (2014) Production of cationic nanogels with potential use in controlled drug delivery. Part Part Syst Charact 31:101–109

    CAS  Google Scholar 

  16. Pikabea A, Aguirre G, Miranda JI, Ramos J, Forcada J (2015) Understanding of nanogels swelling behavior through a deep insight into their morphology. J Polym Sci A Polym Chem 53:2017–2025

    CAS  Google Scholar 

  17. Naveed K-u-R, Wang L, Yu H, Ullah RS, Haroon M, Fahad S, Li J, Elshaarani T, Khan RU, Nazir A (2018) Recent progress in the electron paramagnetic resonance study of polymers. Polymer Chem 9:3306–3335

    CAS  Google Scholar 

  18. Lappan U, Wiesner B, Scheler U (2016) Segmental dynamics of poly(acrylic acid) in polyelectrolyte complex coacervates studied by spin-label EPR spectroscopy. Macromolecules 49:8616–8621

    CAS  Google Scholar 

  19. Rieger PH (2007) Electron spin resonance analysis and interpretation, The Royal Society of Chemistry

  20. Barth J, Buback M (2010) SP-PLP-EPR-a novel method for detailed studies into the termination kinetics of radical polymerization. Macromol React Eng 4:288–301

    CAS  Google Scholar 

  21. Roessler MM, Salvadori E (2018) Principles and applications of EPR spectroscopy in the chemical sciences. Chem Soc Rev 47:2534–2553

    PubMed  CAS  Google Scholar 

  22. Fu Q, Gray ZR, Est AV, Pelton RH (2016) Phase behavior of aqueous poly(acrylic acid-g-TEMPO). Macromolecules 49:4935–4939

    CAS  Google Scholar 

  23. Badetti E, Lloveras V, Muñoz-Gómez JL, Sebastián RMA, Caminade AM, Majoral JP, Veciana J, Vidal-Gancedo J (2014) Radical dendrimers: a family of five generations of phosphorus dendrimers functionalized with TEMPO radicals. Macromolecules 47:7717–7724

    CAS  Google Scholar 

  24. Zhang J, Shen H, Song W, Wang G (2017) Synthesis and characterization of novel copolymers with different topological structures and TEMPO radical distributions. Macromolecules 50:2683–2695

    CAS  Google Scholar 

  25. Xia Y, Li Y, Burts AO, Ottaviani MF, Tirrell DA, Johnson JA, Turro NJ, Grubbs RH (2011) EPR study of spin labeled brush polymers in organic solvents. J Am Chem Soc 133:19953–19959

    PubMed  CAS  Google Scholar 

  26. Zheng JY, Tan MJ, Thoniyot P, Loh XJ (2015) Unusual thermogelling behaviour of poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA)-based polymers polymerized in bulk. RSC Adv 5:62314–62318

    CAS  Google Scholar 

  27. Zhang K, Hu Y, Wang L, Fan J, Monteiro MJ, Jia Z (2017) The impact of the molecular weight on the electrochemical properties of poly(TEMPO methacrylate). Polym Chem 8:1815–1823

    CAS  Google Scholar 

  28. Zhang Y, Park A, Cintora A, McMillan SR, Harmon NJ, Moehle A, Flatté ME, Fuchs GD, Ober CK (2018) Impact of the synthesis method on the solid-state charge transport of radical polymers. J Mater Chem C 6:111–118

    CAS  Google Scholar 

  29. Uemukai T, Hioki T, Ishifune M (2013) Thermoresponsive and redox behaviors of poly(N-isopropylacrylamide)-based block copolymers having TEMPO groups as their side chains. Int J Polymer Sci 2013:1–9

    Google Scholar 

  30. Marek A, Czernek J, Steinhart M, Labský J, Štěpánek P, Pilař J (2004) Local segmental dynamics of poly(2-hydroxyethyl methacrylate) in methanolic solution by spin label X-band ESR. J Phys Chem B 108:9482–9490

    CAS  Google Scholar 

  31. Zhou J, Zhang T, Liu X (2014) Reactivity ratios and sequence structures of the copolymers prepared by photo-induced copolymerization of MMA with MPMP. J Polym Res 21:532

    Google Scholar 

  32. Zheng L, Mukherjee S, Wang K, Hay ME, Boudouris BW, Gong X (2017) Radical polymers as interfacial layers in inverted hybrid perovskite solar cells. J Mater Chem A 5:23831–23839

    CAS  Google Scholar 

  33. Bertrand O, Vlad A, Hoogenboom R, Gohy J-F (2016) Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol-water mixtures. Polym Chem 7:1088–1095

    CAS  Google Scholar 

  34. Janoschka T, Teichler A, Krieg A, Hager M, Schubert US (2012) Polymerization of free secondary amine bearing monomers by RAFT polymerization and other controlled radical techniques. J Polymer SciPart A 50:1394–1407

    CAS  Google Scholar 

  35. Bobbitt JM, Eddy NA, Cady CX, Jin J, Gascon JA, Gelpí-Dominguez S, Zakrzewski J, Morton MD (2017) Preparation of some homologous TEMPO nitroxides and oxoammonium salts; notes on the NMR spectroscopy of nitroxide free radicals; observed radical nature of oxoammonium salt solutions containing trace amounts of corresponding nitroxides in an equilibrium relationship. J Organic Chem 82:9279–9290

    CAS  Google Scholar 

  36. Xu L, Yang F, Su C, Ji L, Zhang C (2014) Synthesis and properties of novel TEMPO-contained polypyrrole derivatives as the cathode material of organic radical battery. Electrochim Acta 130:148–155

    CAS  Google Scholar 

  37. Żamojć K, Zdrowowicz M, Wiczk W, Jacewicz D, Chmurzyński L (2015) Dihydroxycoumarins as highly selective fluorescent probes for the fast detection of 4-hydroxy-TEMPO in aqueous solution. RSC Adv 5:63807–63812

    Google Scholar 

  38. Żamojć K, Wiczk W, Zaborowski B, Jacewicz D, Chmurzyński L (2014) Analysis of fluorescence quenching of coumarin derivatives by 4-hydroxy-TEMPO in aqueous solution. J Fluoresc 24:713–718

    PubMed  Google Scholar 

  39. Guo Z, Gu H, Ma W, Chen Q, He Z, Zhang J, Liu Y, Zheng L, Feng Y (2017) CO2-switchable polymer-hybrid silver nanoparticles and their gas-tunable catalytic activity. RSC Adv 7:49777–49786

    CAS  Google Scholar 

  40. Fatih M, Kadir C (2019) Synthesis and thermal degradation of amphiphilic 2-(diethylaminoethyl) methacrylate by atom transfer radical polymerization and its copolymers with isobornylmethacrylate. Am Int J Contemp Res 2:16–30

    Google Scholar 

  41. Li D, Shen X, Chen L, Jiang H, Wang J (2015) The stability of covalently immobilization of TEMPO on the polymer surface through ionic liquid linkage: a comparative and model research. e-Polymers 15:39–44

    CAS  Google Scholar 

  42. Rostro L, Baradwaj AG, Muller AR, Laster JS, Boudouris BW (2015) Synthesis and thin-film self-assembly of radical-containing diblock copolymers. MRS Commun 5:257–263

    CAS  Google Scholar 

  43. Marek SR, Conn CA, Peppas NA (2010) Cationic nanogels based on diethylaminoethyl methacrylate. Polymer 51:1237–1243

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Tomlinson EP, Hay ME, Boudouris BW (2014) Radical polymers and their application to organic electronic devices. Macromolecules 47:6145–6158

    CAS  Google Scholar 

  45. Bugnon L, Morton CJH, Novak P, Vetter J, Nesvadba P (2007) Synthesis of poly(4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 19:2910–2914

    CAS  Google Scholar 

  46. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  47. Topham PD, Howse JR, Mykhaylyk OO, Armes SP, Jones RAL, Ryan AJ (2006) Synthesis and solid state properties of a poly(methyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) triblock copolymer. Macromolecules 39:5573–5576

    CAS  Google Scholar 

  48. Xie J, Li A, Li J (2017) Advances in pH-sensitive polymers for smart insulin delivery. Macromol Rapid Commun 38:1–14

    Google Scholar 

  49. Bovey FA, Tiers GVD, Filipovich G (1959) Polymer NSR spectroscopy. I. The motion and configuration of polymer chains in solution. J Polym Sci 38:73–90

    CAS  Google Scholar 

  50. Jiang P, Li D, Liu Y, Hao X, Zhang X, Gao J, Deng K (2013) Remarkable pH-responsive microfiltration membrane from well-defined PS-b-PDEAEMA copolymers by ATRP method. J Macromol Sci A 50:991–1001

    CAS  Google Scholar 

  51. Liu L, Wu C, Zhang J, Zhang M, Liu Y, Wang X, Fu G (2008) Controlled polymerization of 2-(diethylamino)ethyl methacrylate and its block copolymer with N-isopropylacrylamide by RAFT polymerization. J Polym Sci A Polym Chem 46:3294–3305

    CAS  Google Scholar 

  52. Zhang CY, Wu WS, Yao N, Zhao B, Zhang LJ (2014) pH-sensitive amphiphilic copolymer brush Chol-g-P(HEMA-co-DEAEMA)-b-PPEGMA: synthesis and self-assembled micelles for controlled anti-cancer drug release. RSC Adv 4:40232–40240

    CAS  Google Scholar 

  53. Wright DB, Patterson JP, Pitto-Barry A, Cotanda P, Chassenieux C, Colombani O, O'Reilly RK (2015) Tuning the aggregation behavior of pH-responsive micelles by copolymerization. Polym Chem 6:2761–2768

    CAS  Google Scholar 

  54. Smeets NMB (2013) Amphiphilic hyperbranched polymers from the copolymerization of a vinyl and divinyl monomer: the potential of catalytic chain transfer polymerization. Eur Polym J 49:2528–2544

    CAS  Google Scholar 

  55. Chen Q, Lin W, Wang H, Wang J, Zhang L (2016) PDEAEMA-based pH-sensitive amphiphilic pentablock copolymers for controlled anticancer drug delivery. RSC Adv 6:68018–68027

    CAS  Google Scholar 

  56. Geng W, He X, Su Y, Dang J, Gu J, Tian W, Zhang Q (2016) Remarkable humidity-responsive sensor based on poly (N,N-diethylaminoethyl methacrylate)-b-polystyrene block copolymers. Sensors Actuators B Chem 226:471–477

    CAS  Google Scholar 

  57. Han J, Jiang S, Gao Y, Sun F (2016) Intramolecular-initiating photopolymerization behavior of nanogels with the capability of reducing shrinkage. J Mater Chem C 4:10675–10683

    CAS  Google Scholar 

  58. Yang H, Guo J, Tong R, Yang C, Chen J-K (2018) pH-sensitive micelles based on star copolymer AD-(PCL-b-PDEAEMA-b-PPEGMA)4 for controlled drug delivery. Polymers 10:443

    PubMed Central  Google Scholar 

  59. Yang C, Xiao J, Xiao W, Lin W, Chen J, Chen Q, Zhang L, Zhang CY, Guo JW (2017) Fabrication of PDEAEMA-based pH-responsive mixed micelles for application in controlled doxorubicin release. RSC Adv 7:27564–27573

    CAS  Google Scholar 

  60. Pikabea A, Ramos J, Papachristos N, Stamopoulos D, Forcada J (2016) Synthesis and characterization of PDEAEMA-based magneto-nanogels: preliminary results on the biocompatibility with cells of human peripheral blood. J Polym Sci A Polym Chem 54:1479–1494

    CAS  Google Scholar 

  61. Wang J, Wu Z, Shen H, Wang G (2017) Synthesis, characterization and the paramagnetic properties of bottle-brush copolymers with shielding TEMPO radicals. Polym Chem 8:7044–7053

    CAS  Google Scholar 

  62. Nishide H, Iwasa S, Pu Y-J, Suga T, Nakahara K, Satoh M (2004) Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim Acta 50:827–831

    CAS  Google Scholar 

  63. Boase NRB, Torres MDT, Fletcher NL, de la Fuente-Nunez C, Fairfull-Smith KE (2018) Polynitroxide copolymers to reduce biofilm fouling on surfaces. Polym Chem 9:5308–5318

    CAS  Google Scholar 

  64. Junk MJN, Jonas U, Hinderberger D (2008) EPR spectroscopy reveals nanoinhomogeneities in the structure and reactivity of thermoresponsive hydrogels. Small 4:1485–1493

    PubMed  CAS  Google Scholar 

  65. Rice WD, Weber RT, Leonard AD, Tour JM, Nikolaev P, Arepalli S, Berka V, Tsai A-L, Kono J (2012) Enhancement of the electron spin resonance of single-walled carbon nanotubes by oxygen removal. ACS Nano 6:2165–2173

    PubMed  CAS  Google Scholar 

  66. Mohanty JG, Rifkind JM (1984) The effect of temperature on ESR signal intensities in aqueous solutions. J Magn Reson 57:178–184

    CAS  Google Scholar 

  67. Wu K, Li W, Yu L, Tong W, Feng Y, Ling S, Zhang L, Zheng X, Yang M, Tian C (2017) Temperature-dependent ESR and computational studies on antiferromagnetic electron transfer in the yeast NADH dehydrogenase Ndi1. Phys Chem Chem Phys 19:4849–4854

    PubMed  CAS  Google Scholar 

Download references

Funding

Financial support from the National Key Research and Development program (2016YFB0302403) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Haojie Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed, KuR., Wang, L., Yu, H. et al. Synthesis of poly(diethylaminoethyl methacrylate-co-2,2,6,6-tetramethyl-4-piperidyl methacrylate)s and their segmental motion study. Colloid Polym Sci 298, 1473–1486 (2020). https://doi.org/10.1007/s00396-020-04717-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04717-1

Keywords

Navigation