Skip to main content

Advertisement

Log in

CO2 biofixation by Synechococcus elongatus from the power plant flue gas under various light–dark cycles

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Carbon dioxide emission, which acts as one of the major agents of greenhouse gases (GHG), has significant effects on global warming. Nowadays, there is a considerable global tendency toward decreasing the amount of GHG emissions to the atmosphere. In the present study, a simulated power plant flue gas (Be’sat, Power Plant, Tehran) with a constant injection rate of 21.41 cm3 s−1, including 10% CO2, 7% O2 and 83% N2 , was injected to the Synechococcus elongatus culture under two different light–dark (L/D) cycles: 24-0 and 16-8. Additionally, the biomass productivity and the CO2 biofixation rate by microorganisms were investigated. The highest biomass productivities were recorded as 0.68 and 0.52 g L−1 d−1 for 24-0 and 16-8 L/D cycles, respectively. Furthermore, the maximum rate of the CO2 biofixation was 1.26 g L−1 d−1 for the 24-0 L/D cycle and 0.98 g L−1 d−1 for the 16-8 L/D cycle during the cultivation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamczyk M, Lasek J, Skawińska A (2016) CO2 biofixation and growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Appl Biochem Biotech 179:1248–1261

    CAS  Google Scholar 

  • Arroyo CA, Contreras JL, Zeifert B, Ramírez C (2019) CO2 capture of the gas emission, using a catalytic converter and Airlift Bioreactors with the Microalga Scenedesmus dimorphus. Appl. Sci. 9:3212

    CAS  Google Scholar 

  • Barahoei M, Hatamipour MS, Afsharzadeh S (2020) CO2 capturing by chlorella vulgaris in a bubble column photo-bioreactor; Effect of bubble size on CO2 removal and growth rate. J. Co2 Util 37:9–19

    CAS  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotech 20:264–271

    CAS  Google Scholar 

  • Cannon GC, Heinhorst S, Kerfeld CA (2010) Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim Biophys Acta Proteins Proteom 1804:382–392

    CAS  Google Scholar 

  • Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201

    CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  Google Scholar 

  • Chiu S-Y, Kao C-Y, Chen C-H, Kuan T-C, Ong S-C, Lin C-S (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396

    CAS  Google Scholar 

  • De Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Google Scholar 

  • Delavari Amrei H, Nasernejad B, Ranjbar R, Rastegar S (2014) An integrated wavelength-shifting strategy for enhancement of microalgal growth rate in PMMA-and polycarbonate-based photobioreactors. Eur J Phycol 49:324–331

    CAS  Google Scholar 

  • Devgoswami CR, Kalita M, Talukdar J, Bora R, Sharma P (2011) Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. Afr J Biotechnol 10:13128–13138

    CAS  Google Scholar 

  • Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    CAS  Google Scholar 

  • Hashemi A, Moslemi M, Pajoum Shariati F, Delavari Amrei H (2020) Beta-carotene production within Dunaliella salina cells under salt stress condition in an indoor hybrid helical-tubular photobioreactor. Can J Chem Eng 98:69–74

    CAS  Google Scholar 

  • Ho S-H, Chen C-Y, Lee D-J, Chang J-S (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29:189–198. https://www.epa.gov/. Accessed on 20 January 2019

    CAS  Google Scholar 

  • Jiang L, Luo S, Fan X, Yang Z, Guo R (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energ 88:3336–3341

    CAS  Google Scholar 

  • Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1129

    Google Scholar 

  • Kassim M, Potumarthi R, Tanksale A, Srivatsa S, Bhattacharya S (2014) Enzymatic saccharification of dilute alkaline pre-treated microalgal (Tetraselmis suecica) biomass for biobutanol production. Int J Biol Vet Agric Food Eng 6:967–972

    Google Scholar 

  • Khan SA, Hussain MZ, Prasad S, Banerjee U (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13:2361–2372

    CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J GreenH Gas Con 10:456–469

    CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  Google Scholar 

  • Li F-F, Yang Z-H, Zeng R, Yang G, Chang X, Yan J-B, Hou Y-L (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50:6496–6502

    CAS  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energ Convers Manag 6:717–720

    Google Scholar 

  • Martín-Girela I, Curt MD, Fernández J (2017) Flashing light effects on CO2 absorption by microalgae grown on a biofilm photobioreactor. Algal Res 25:421–430

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Google Scholar 

  • Milano J, Ong HC, Masjuki H, Chong W, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev 58:180–197

    Google Scholar 

  • Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgal and cyanobacterial acclimation to low-and extremely high-CO2 conditions. Photosynth Res 77:139–153

    CAS  Google Scholar 

  • Mortezaeikia V, Yegani R, Tavakoli O (2016) Membrane-sparger vs. membrane contactor as a photobioreactors for carbon dioxide biofixation of Synechococcus elongatus in batch and semi-continuous mode. J cO2 Util 16:23–31

    CAS  Google Scholar 

  • Nagase H et al (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem Eng J 7:241–246

    CAS  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER, Armbrust EV (1990) Pigments, size, and distributions of Synechococcus in the North Atlantic and Pacific Oceans. Limnol Oceanogr 35:45–58

    CAS  Google Scholar 

  • Ono E, Cuello J (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96:129–134

    Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    CAS  Google Scholar 

  • Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: a technical appraisal and economic feasibility evaluation. Biomass Bioenerg 35:3865–3876

    CAS  Google Scholar 

  • Sadeghizadeh A, Moghaddasi L, Rahimi R (2017) CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. Biores Technol 243:441–447

    CAS  Google Scholar 

  • Saratale RG, Kumar G, Banu R, Xia A, Periyasamy S, Saratale GD (2018) A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour Technol 262:319–332

    Google Scholar 

  • Shiraiwa Y, Goyal A, Tolbert N (1993) Alkalization of the medium by unicellular green algae during uptake dissolved inorganic carbon. Plant Cell Physiol 34:649–657

    CAS  Google Scholar 

  • Singh J, Dhar DW (2019) Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art. Front Mar Sci 6:29

    Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Google Scholar 

  • Steffen MM, Li Z, Effler TC, Hauser LJ, Boyer GL, Wilhelm SW (2012) Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents. PLoS ONE 7:e44002

    CAS  Google Scholar 

  • Stewart C, Hessami M-A (2005) A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energ Convers Manag 46:403–420

    CAS  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    CAS  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    CAS  Google Scholar 

  • Tsuzuki M, Miyachi S (1989) The function of carbonic anhydrase in aquatic photosynthesis. Aquat Bot 34:85–104

    CAS  Google Scholar 

  • Umar A, In-na P, Wallace AD, Flickinger M, Caldwell GS, Lee J (2019) Loofah-based microalgae and cyanobacteria biocomposites for intensifying carbon dioxide capture. Available at SSRN 3489079

  • Waterbury JB (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Photosynthetic picoplankton:71-120

  • Yang M, Damjanović A, Vaswani HM, Fleming GR (2003) Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85:140–158

    CAS  Google Scholar 

  • Yang C-Y, Fang Z, Li B, Long Y-f (2012) Review and prospects of Jatropha biodiesel industry in China. Renew Sust Energ Rev 16:2178–2190

    CAS  Google Scholar 

  • Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    CAS  Google Scholar 

  • Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energ Convers Manage 46:1868–1876

    CAS  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnology: International Research in Process, Environ Clean Tech 69:451–455

    CAS  Google Scholar 

  • Zhang X (2015) Microalgae removal of CO2 from flue gas clean coal technology research reports, April Retrieved from http://bookshop.iea-coalorg.uk/reports/ccc-250/83697.244

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank Parisa and Mahsa Keyvan Hoseini for editing the manuscript through the native English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Pajoum Shariati.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, A., Pajoum Shariati, F., Sohani, E. et al. CO2 biofixation by Synechococcus elongatus from the power plant flue gas under various light–dark cycles. Clean Techn Environ Policy 22, 1735–1743 (2020). https://doi.org/10.1007/s10098-020-01912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-020-01912-0

Keywords

Navigation