Skip to main content
Log in

Photoluminescence properties of pure, Fe-doped and surfactant-assisted Fe-doped tin-oxide nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A co-precipitation method with water as a distinctive solvent was used for the synthesis of pure, Fe-doped and surfactant-assisted Fe-doped SnO2 nanoparticles (NPs). Furthermore, the NPs were characterized using X-ray diffraction (XRD), Fourier-transform infrared, scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), UV–visible, photoluminescence spectroscopy and spectrofluorometer. XRD patterns showed a tetragonal rutile structure of SnO2 phase without additional peaks and a shift was noted for Fe-doped and surfactant-assisted Fe-doped samples. The crystallite sizes of Fe-doped and surfactant-assisted Fe-doped SnO2 NPs were found to decrease from 10.39 to 6.347 nm. Spherical morphology with uniform size was observed in all samples from SEM and HRTEM images. The presence of Sn, O and Fe ions was confirmed by EDAX analysis. The band gap energy of NPs was measured to be 3.487, 3.741, 3.845, 3.783 and 3.552 eV for pure, Fe-doped, cetyltrimethylammonium bromide, sodium dodecyl sulphate and Triton (surfactants) assisted Fe-doped NPs, respectively. An increase in the band gap was observed due to addition of Fe and surfactants. The photocatalytic study confirms that pure SnO2 NPs exhibit a significant photo-degradation of methylene blue dye under sun light. Moreover, the physical properties of SnO2 were modified by Fe-doping and addition of surfactants in comparison with pure SnO2 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Yelwande A A, Navgire M E, Tayde D K, Arbad B R and Lande M K 2012 Korean Chem. Soc. 33 1856

    CAS  Google Scholar 

  2. Sujatha K, Seethalakshmi T and Shanmugasundaram O L 2016 Nanotechnol. Res. Pract. 11 98

    Google Scholar 

  3. Saleh S A, Ibrahim A A and Mohamed S H 2016 Acta Phys. Pol. A 129 1220

  4. Ogawa H, Abe A, Nishikawa M and Hayakawa S 1981 J. Electrochem. Soc. 128 2020

    CAS  Google Scholar 

  5. Jarzebski Z M and Marton J P 1976 J. Electrochem. Soc. 123 299c

    CAS  Google Scholar 

  6. Jarzebski Z M and Marton J P 1976 J. Electrochem. Soc. 123 333c

    CAS  Google Scholar 

  7. Arfsten N J, Kaufmann R and Dislich H 1984 IC 189 184

    Google Scholar 

  8. Agrahari V, Mathpal M C, Kumar S, Kumar M and Agarwal A 2016 J. Mater. Sci.: Mater. Electron. 27 6020

    CAS  Google Scholar 

  9. Naseem T and Farrukh M A 2015 J. Chem. 2015 912342

    Google Scholar 

  10. Arshad M, Farrukh M A, Imtiaz A and Noor N 2015 J. Chem. 27 371

    CAS  Google Scholar 

  11. Norris D J, Efros A L and Erwin S C 2008 Science 319 1776

    CAS  Google Scholar 

  12. Cao Y C 2011 Science 332 48

    Google Scholar 

  13. Bryan D, Heald S M, Chambers S A and Gamelin D R 2004 J. Am. Chem. Soc. 126 11640

    CAS  Google Scholar 

  14. Choudhury B, Choudhury A, Maidul Islam A K M, Alagarsamy P and Mukherjee M 2011 J. Magn. Magn. Mater. 323 440

    CAS  Google Scholar 

  15. Cajas C, Aragon F H, Campo C M, Coaquira J A H and Rodrıguez-Paez J E 2012 Rev. Mex. Fis. 58 12

    CAS  Google Scholar 

  16. Majeed M I, Yanetal Q and Lu W 2013 J. Mater. Chem. B 22 2874

    Google Scholar 

  17. Bae K H, Park M, Do M J, Lee N, Ryu J H, Kim G W et al 2012 ACS Nano 6 5266

    CAS  Google Scholar 

  18. Yang X, Jiang W, Liu L, Chen B, Wu S, Sun D et al 2012 J. Magn. Magn. Mater. 324 2249

    CAS  Google Scholar 

  19. Wan J Q, Cai W, Meng X X and Liu E 2007 Chem. Commun. 47 5004

    Google Scholar 

  20. Zou G L, Liu R, Chen W X and Xu Z D 2007 Mater. Res. Bull. 42 1153

    CAS  Google Scholar 

  21. Gu F, Wang S F, Lu M K, Zhou G J, Xu D and Yuan D R 2004 J. Phys. Chem. B. 108 8119

    CAS  Google Scholar 

  22. Dhanya Chandran S, Nair L, Balachandran S, Rajendra Babu K and Deepa M 2015 J. Sol–Gel Sci. Technol. 7 125

    Google Scholar 

  23. Kar A and Patra A 2013 Trans. Indian Ceram. Soc. 72 89

    CAS  Google Scholar 

  24. Jana B, Bhattacharyya S and Patra A 2015 Phys. Chem. Chem. Phys. 17 15392

    CAS  Google Scholar 

  25. Kar A, Sain S, Kundu S, Bhattacharyya A, Pradhan S K and Patra A 2015 ChemPhysChem 16 1017

    CAS  Google Scholar 

  26. Sreekar Reddy K, Nithiyanantham S, Geetha G, Annie Sujatha R and Mahalakshmi S 2019 J. Mater. Appl. 8 12

    Google Scholar 

  27. Toloman D, Popa A, Stan M, Socaci C, Biris A R, Katona G et al 2017 Appl. Surf. Sci. 402 410

    CAS  Google Scholar 

  28. Chikhale L P, Patil J Y, Rajgure A V, Shaikh F I, Mulla I S and Suryavanshi S S 2014 Measurement 57 46

    Google Scholar 

  29. Mariani Ciciliati A, Marcela Silva F, Daniel Fernandes M, Mauricio de Melo A C, Ana Adelina Hechenleitner W and Edgardo Pineda A G 2015 Mater. Lett. 159 84

    Google Scholar 

  30. Mueller F, Bresser D, Chakravadhanula V S K and Passerini S 2015 J. Power Sources 299 398

    CAS  Google Scholar 

  31. Madhan D, Parthibavarman M, Rajkumar P and Sangeetha M 2015 J. Mater. Sci. 26 6823

    CAS  Google Scholar 

  32. Wang W-W, Zhu Y-J and Yang L-X 2007 Adv. Funct. Mater. 17 59

    Google Scholar 

  33. Qu X, Wang M H, Chen Y, Sun W J, Yang R and Zhang H P 2017 Mater. Lett. 186 182

    CAS  Google Scholar 

  34. Ansari S G, Boroojerdian P, Sainkar S R, Karekar R N, Aiyer R C and Kulkarni S K 1997 Thin Solid Films 295 271

    CAS  Google Scholar 

  35. Thirumala Rao G, Babu B, Ravikumar R V S S N, Shim J and Venkata Reddy Ch 2017 Mater. Res. Express 4 1

    Google Scholar 

  36. Sujatha K, Seethalakshmi T and Subha T 2018 Adv. Res. Appl. Sci. 5 241

    Google Scholar 

  37. Krishnakumar T, Jayaprakash R, Singh V N and Mehta B R 2008 J. Nano Res. 4 91

    CAS  Google Scholar 

  38. Sujatha K and Seethalakshmi T 2017 Int. J. Sci. Res. Sci. Technol. 3 639

    Google Scholar 

  39. Luo C, Zhang Y, Zeng X, Zeng Y and Wang Y 2005 J. Colliod Interface Sci. 288 444

    CAS  Google Scholar 

  40. Oswald H R, Reller A, Schmalle H W F and Dubler E 1990 Acta Crystallogr. C 46 2297

    Google Scholar 

  41. Saravanakumar B, Ravi G, Ganesh V, Ameen F, Al-Sabri A and Yuvakkumar R 2018 J. Sol–Gel Sci. Technol. 2 15

    Google Scholar 

  42. Amutha T, Lavanya P, Rameshbabu M and Prabha K 2017 Int. Res. J. Eng. Technol. Nanotechnol. Res. Pract. 11 98

    Google Scholar 

  43. Kaur J, Shah J, Kotnala R K and Verma K C 2012 Ceram. Int. 38 5563

    CAS  Google Scholar 

  44. Sharma A, Varshney M, Kumar S, Verma K D and Kumar R 2011 Nanomater. Nanotechnol. 1 29

    Google Scholar 

  45. Mills G, Li Z G and Meisel D 1988 J. Phys. Chem. 92 822

    CAS  Google Scholar 

  46. Parthibavarman M, Renganathan B and Sastikumar D 2013 Curr. Appl. Phys. 13 1537

    Google Scholar 

  47. Yu B L, Zhu C S and Gan F X 1997 Opt. Mater. 7 15

    Google Scholar 

  48. Choi W, Termin A and Hoffmann M R 1994 J. Phys. Chem. 98 3669

    Google Scholar 

  49. Wu X, Wei Z, Zhang L, Wang X, Yang H and Jiang J 2014 J. Nanomater. 13 1

    Google Scholar 

  50. Liu C M, Zu X T, Wei Q M and Wang L M 2006 J. Phys. D: Appl. Phys. 39 2494

    CAS  Google Scholar 

  51. Karuppiah S, Thangaraj S, Palaniappan S A and Lakshmanan S O 2019 IET Nanobiotechnol. 13 1

    Google Scholar 

  52. Wu S, Cao H, Yin S, Liu X and Zhang X 2009 J. Phys. Chem. C 113 17893

    CAS  Google Scholar 

  53. Shanmugam N, Sathya T, Viruthagiri G, Kalyanasundaram C, Gobi R and Ragupathy S 2016 Appl. Surf. Sci. 360 283

    CAS  Google Scholar 

  54. Rawal I 2015 RSC Adv. 5 4135

    CAS  Google Scholar 

  55. Srinivas K, Manjunath Rao S and Venugopal Reddy P 2011 Nanoscale 3 642

    CAS  Google Scholar 

  56. Alshabanat M N and Al-Anazy M M 2018 J. Chem. 2018 1

    Google Scholar 

  57. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C and Herrmannm J-M 2001 Appl. Catal. B: Environ. 31 145

    CAS  Google Scholar 

  58. Sudha A P and Ranjitha M 2018 Int. J. Res. Anal. Rev. 5 284

    Google Scholar 

  59. Kim S P, Choi M Y and Choi H C 2016 Mater. Res. Bull. 74 85

    CAS  Google Scholar 

  60. Sujatha K, Seethalakshmi T, Sudha A P and Shanmugasundaram O L 2019 Nano-Struct. Nano-Objects 18 100305

    CAS  Google Scholar 

  61. Pant A, Tanwar R, Kaur B and Mandal U K 2018 Sci. Rep. 8 14700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Seethalakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujatha, K., Seethalakshmi, T., Sudha, A.P. et al. Photoluminescence properties of pure, Fe-doped and surfactant-assisted Fe-doped tin-oxide nanoparticles. Bull Mater Sci 43, 212 (2020). https://doi.org/10.1007/s12034-020-02169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02169-5

Keywords

Navigation