Skip to main content
Log in

Enhanced electrical, mechanical and thermal properties of chemically modified graphene-reinforced polybenzimidazole nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Chemically modified graphene-reinforced polybenzimidazole (PBI) nanocomposites were prepared by liquid-phase exfoliation of graphene oxide (GO) and reduced graphene oxide (rGO) in methanesulphonic acid (CH4O3S), followed by in-situ polymerization using GO–CH4O3S and rGO–CH4O3S suspensions as reaction media. Various reducing agents were used to produce rGOs and their reducing efficiency was examined to attain highly graphitic structure and excellent electrical conductivity of the resulting rGOs. The results of Raman, Fourier transform infrared and X-ray photoelectron spectroscopy indicate higher extent of reduction of GO with hydrazine compared to other reducing agents. The PBI nanocomposite containing 10 wt% rGO derived from hydrazine reduction reaction (rGO–H) exhibits the highest dc conductivity of 2.77 × 10−3 S cm−1 at room temperature, which is 11 orders of magnitude higher than pure PBI. The thermal annealing treatment at 350°C resulted in a substantial increase in dc conductivity of the PBI/GO nanocomposite, whereas the enhancement of conductivity is much less for the PBI/rGO nanocomposites. Compared to pure PBI, both tensile strength and Young’s modulus enhanced by 3.4 times and 6.9 times, respectively, for the PBI nanocomposites with 10 wt% GO content, which is ascribed to strong interfacial interactions and subsequent effective stress transfer between the PBI matrix and GO. The PBI/rGO nanocomposites exhibited relatively lower tensile strength/modulus compared to the GO-reinforced nanocomposite. The thermal stability of PBI was significantly improved upon the incorporation of both GO and rGO nanosheets, whereas higher thermal stability was achieved for rGO-reinforced nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Anand S and Muthusamy A 2017 J. Mol. Struct. 1148 254

    CAS  Google Scholar 

  2. Subianto S 2014 Polym. Int. 63 1134

    CAS  Google Scholar 

  3. Aharoni S M and Signorelli A J 1979 J. Appl. Polym. Sci. 23 2653

    CAS  Google Scholar 

  4. Pohl H A and Chartoff R P 1964 J. Polym. Sci. Polym. Chem. 2 2787

    Google Scholar 

  5. Wu Q X, Pan Z F and An L 2018 Renew. Sustain. Energy Rev. 89 168

    CAS  Google Scholar 

  6. Zarrin H, Jiang G, Lam G Y Y, Fowler M and Chen Z 2014 Int. J. Hydrogen Energy 39 18405

    CAS  Google Scholar 

  7. Jahangiri S, Aravi İ, Şanli L I, Menceloğlu Y Z and Özden-Yenigün E 2018 Polym. Adv. Technol. 29 594

    CAS  Google Scholar 

  8. Jang J K, Kim T H, Yoon S J, Lee J Y, Lee J C and Hong Y T 2016 J. Mater. Chem. A 4 14342

    CAS  Google Scholar 

  9. Jones D J and Roziere J 2001 J. Membr. Sci. 185 41

    CAS  Google Scholar 

  10. Yu S and Benicewicz B C 2009 Macromolecules 42 8640

    CAS  Google Scholar 

  11. Shao H, Shi Z, Fang J and Yin J 2009 Polymer 50 5987

    CAS  Google Scholar 

  12. Park J and Jeong Y G 2015 Polymer 59 102

    CAS  Google Scholar 

  13. Cai Y, Yue Z, Teng X and Xua S 2018 Eur. Polym. J. 103 207

    CAS  Google Scholar 

  14. Ahmad M W, Dey B, Sarkhel G, Bag D S and Choudhury A 2019 Mater. Chem. Phys. 223 426

    CAS  Google Scholar 

  15. Zhang L, Ni Q Q, Shiga A, Natsuki T and Fu Y 2011 Polym. Eng. Sci. 51 1525

    CAS  Google Scholar 

  16. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    CAS  Google Scholar 

  17. Li D and Kaner R B 2008 Science 320 1170

    CAS  Google Scholar 

  18. Thostenson E T, Li C and Chou T W 2005 Compos. Sci. Technol. 65 491

    CAS  Google Scholar 

  19. Idowu A, Boesl B and Agarwal A 2018 Carbon 135 52

    CAS  Google Scholar 

  20. Ji X, Xu Y, Zhang W, Cui L and Liu J 2016 Compos. Part A 87 29

    CAS  Google Scholar 

  21. Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y et al 2014 Polymer 55 201

    CAS  Google Scholar 

  22. Mittal G, Dhand V, Rhee K Y, Park S J and Lee W R 2015 J. Ind. Eng. Chem. 21 11

    CAS  Google Scholar 

  23. Tripathi S N, Rao G S S, Mathur A B and Jasra R 2017 RSC Adv. 7 23615

    CAS  Google Scholar 

  24. Ferreira F V, Brito F S, Franceschi W, Simonetti E A N, Cividanes L S, Chipara M et al 2018 Surf. Interfaces 10 100

    CAS  Google Scholar 

  25. Layek R K and Nandi A K 2013 Polymer 54 5087

    CAS  Google Scholar 

  26. Punetha V D, Rana S, Yoo H J, Chaurasia A, McLeskey Jr J T, Ramasamy M S et al 2017 Prog. Polym. Sci. 67 1

    CAS  Google Scholar 

  27. Kuila T, Bose S, Mishra A K, Khanra P, Kim N H and Lee J H 2012 Prog. Mater. Sci. 57 1061

    CAS  Google Scholar 

  28. Papageorgiou D G, Kinloch I A and Young R J 2015 Carbon 95 460

    CAS  Google Scholar 

  29. Lv J, Zhang G, Zhang H and Yang F 2018 Chem. Eng. J. 352 765

    CAS  Google Scholar 

  30. Li F, Qu C B, Hua Y, Xiao H M and Fu S Y 2017 Carbon 119 339

    CAS  Google Scholar 

  31. Zhang M, Yan H, Yuan L and Liu C 2016 RSC Adv. 6 38887

    CAS  Google Scholar 

  32. Woodward R T, Markoulidis F, Luca F D, Anthony D B, Malko D, McDonald T O et al 2018 J. Mater. Chem. A 6 1840

    CAS  Google Scholar 

  33. Alexandre M and Dubois P 2000 Mater. Sci. Eng. R 28 1

    Google Scholar 

  34. Tang Q, Zhou Z and Chen Z 2013 Nanoscale 5 4541

    CAS  Google Scholar 

  35. Wang Y, Chen L, Yu J, Zhu J, Shi Z and Hu Z 2013 RSC Adv. 3 12255

    CAS  Google Scholar 

  36. Wang Y, Shi Z, Fang J, Xu H and Yin J 2011 Carbon 49 1199

    CAS  Google Scholar 

  37. Hu Z, Li N, Li J, Zhang C, Song Y, Li X et al 2015 Polymer 7 14

    Google Scholar 

  38. Choudhury A 2014 RSC Adv. 8 8856

    Google Scholar 

  39. Botsa S M and Basavaiah K 2019 Nanotechnol. Environ. Eng. 4 1

    CAS  Google Scholar 

  40. Mohan B S, Ravi K, Balaji R A, Sree G S and Basavaiah K 2019 Physica B 553 190

    CAS  Google Scholar 

  41. Balaji R A, Mohan B S, Naidu G P and Muralikrishna R 2019 Physica E 108 105

    Google Scholar 

  42. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    CAS  Google Scholar 

  43. Gao X, Jang J and Nagase S 2010 J. Phys. Chem. C 114 832

    CAS  Google Scholar 

  44. Ferrari A C and Robertson J 2000 Phys. Rev. B: Condens. Matter Mater. Phys. 61 14095

    CAS  Google Scholar 

  45. Guo Y, Sun X, Liu Y, Wang W, Qiu H and Gao J 2012 Carbon 50 2513

    CAS  Google Scholar 

  46. Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126

    CAS  Google Scholar 

  47. Yin J and Elsenbaumer R L 2005 J. Org. Chem. 70 9436

    CAS  Google Scholar 

  48. Conti F, Majerus A, Noto V D, Korte C, Lehnert W and Stolten D 2012 Phys. Chem. Chem. Phys. 14 10022

    CAS  Google Scholar 

  49. Quartarone E, Magistris A, Mustarelli P, Grandi S, Carollo A, Zukowska G Z et al 2009 Fuel Cells 9 349

    CAS  Google Scholar 

  50. Tang Z, Lei Y, Guo B, Zhang L and Jia D 2012 Polymer 53 673

    CAS  Google Scholar 

  51. Zhang H B, Zheng W G, Yan Q, Yang Y, Wang J W, Lu Z H et al 2010 Polymer 51 1191

    CAS  Google Scholar 

  52. Chen Y, Zhuang Q, Liu X, Liu J, Lin S and Han Z 2013 Nanotechnology 24 245702

    Google Scholar 

  53. Park J H, Choudhury A, Farmer B L, Dang T D and Park S Y 2012 Polymer 53 3937

    CAS  Google Scholar 

  54. Dey B, Ahmad M W, Almezeni A, Sarkhel G, Bag D S and Choudhury A 2020 Compos. Commun. 17 87

    Google Scholar 

  55. Fukumaru T, Fujigaya T and Nakashima N 2013 Macromolecules 46 4034

    CAS  Google Scholar 

  56. Zhou D, Zhang Y, Zhu J, Yu J and Hu Z 2019 Carbon 148 297

    CAS  Google Scholar 

  57. Zhou C, Wang S, Zhuang Q and Han Z 2008 Carbon 46 1232

    CAS  Google Scholar 

  58. Jeong Y G, Baik D H, Jang J W, Min B G and Yoon K H 2014 Macromol. Res. 22 279

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Defence Research and Development Organization (DRDO), Govt. of India under the research project (ERIP/ER/1505006/M/01/1624) which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Choudhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, B., Ahmad, M.W., Almezeni, A. et al. Enhanced electrical, mechanical and thermal properties of chemically modified graphene-reinforced polybenzimidazole nanocomposites. Bull Mater Sci 43, 207 (2020). https://doi.org/10.1007/s12034-020-02187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02187-3

Keywords

Navigation