Skip to main content
Log in

New cutoff frequency for torsional Alfv́en waves propagating along wide solar magnetic flux tubes

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

An isolated, isothermal, and wide magnetic flux tube embedded either in the solar chromosphere or in the lower solar corona is considered, and the propagation of linear torsional Alfvén waves is investigated. It is shown that the wideness of the tube leads to a new cutoff frequency, which is a local quantity that gives the conditions for the wave propagation at different atmospheric heights. The cutoff is used to establish the ranges of frequencies for the propagating and reflected waves in the solar chromosphere and lower solar corona. The obtained results are compared to those previously obtained for thin magnetic flux tubes and the differences are discussed. Moreover, the results are also compared to some current observational data, and used to establish the presence of propagating waves in the data at different atmospheric heights; this has profound implications on the energy and momentum transfer by the waves in the solar atmosphere, and the role of linear torsional Alfvén waves in the atmospheric heating and wind acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bonet, J.A., Márquez, I., Sánchez Almeida, J., et al.: Astrophys. J. Lett. 687, L131 (2008)

    ADS  Google Scholar 

  • Cally, P.S., Hansen, S.C.: Astrophys. J. 738, 119 (2011)

    ADS  Google Scholar 

  • Cargill, P., de Moortel, I.: Nature 475, 463 (2011)

    ADS  Google Scholar 

  • Chmielewski, P., Srivastava, A.K., Murawski, K., et al.: Mon. Not. R. Astron. Soc. 428, 40 (2013)

    ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., de Wijn, A.G.: Astrophys. J. Lett. 595, L63 (2003)

    ADS  Google Scholar 

  • De Pontieu, B., Erdélyi, R., De Moortel, I.: Astrophys. J. Lett. 624, L61 (2005)

    ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S.W., Carlsson, M., et al.: Science 318, 1574 (2007)

    ADS  Google Scholar 

  • Defouw, R.J.: Astrophys. J. 209, 266 (1976)

    ADS  Google Scholar 

  • Dwivedi, B.N., Srivastava, A.K.: Curr. Sci. 98, 295 (2010)

    ADS  Google Scholar 

  • Felipe, T., Kuckein, C., Thaler, I.: Astron. Astrophys. 617, A39 (2018)

    ADS  Google Scholar 

  • Ferriz-Mas, A., Schuessler, M.: Astrophys. J. 433, 852 (1994)

    ADS  Google Scholar 

  • Ferriz-Mas, A., Schuessler, M., Anton, V.: Astron. Astrophys. 210, 425 (1989)

    ADS  Google Scholar 

  • Fujimura, D., Tsuneta, S.: Astrophys. J. 702, 1443 (2009)

    ADS  Google Scholar 

  • Hammer, R., Musielak, Z.E., Routh, S.: Astron. Nachr. 331, 593 (2010)

    ADS  Google Scholar 

  • Hasan, S.S.: Adv. Space Res. 42, 86 (2008)

    ADS  Google Scholar 

  • Heinemann, M., Olbert, S.: J. Geophys. Res. 85, 1311 (1980)

    ADS  Google Scholar 

  • Hollweg, J.V.: Sol. Phys. 56, 305 (1978)

    ADS  Google Scholar 

  • Hollweg, J.V.: Sol. Phys. 70, 25 (1981)

    ADS  Google Scholar 

  • Hollweg, J.V.: Sol. Phys. 75, 79 (1982)

    ADS  Google Scholar 

  • Hollweg, J.V.: Adv. Space Plasma Phys. 77 (1985)

  • Hollweg, J.V.: J. Geophys. Res. 95, 14873 (1990)

    ADS  Google Scholar 

  • Jess, D.B., Mathioudakis, M., Erdélyi, R., et al.: Science 323, 1582 (2009)

    ADS  Google Scholar 

  • Kahn, P.: Mathematical methods for scientists and engineers: linear and nonlinear systems. Wiley, New York (1990)

    MATH  Google Scholar 

  • Krogulec, M., Musielak, Z.E., Suess, S.T., et al.: J. Geophys. Res. 99, 23489 (1994)

    ADS  Google Scholar 

  • Kudoh, T., Shibata, K.: Astrophys. J. 514, 493 (1999)

    ADS  Google Scholar 

  • Lamb, H.: Proc. R. Soc. Lond. Ser. A 84, 551 (1911)

    ADS  Google Scholar 

  • Lites, B.W.: In: NATO Advanced Science Institutes (ASI) Series C, p. 261 (1992)

    Google Scholar 

  • Lites, B.W., White, O.R., Packman, D.: Astrophys. J. 253, 386 (1982)

    ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Brown, D.S.: In: American Astronomical Society Meeting Abstracts #204, vol. 204, p. 98.06 (2004)

    Google Scholar 

  • McIntosh, S.W., Fleck, B., Tarbell, T.D.: Astrophys. J. Lett. 609, L95 (2004)

    ADS  Google Scholar 

  • McIntosh, S.W., de Pontieu, B., Carlsson, M., et al.: Nature 475, 477 (2011)

    ADS  Google Scholar 

  • Murawski, K., Musielak, Z.E.: Astron. Astrophys. 518, A37 (2010)

    ADS  Google Scholar 

  • Murawski, K., Srivastava, A.K., Musielak, Z.E.: Astrophys. J. 788, 8 (2014)

    ADS  Google Scholar 

  • Murawski, K., Solov’ev, A., Kraśkiewicz, J.: Sol. Phys. 290, 1909 (2015)

    ADS  Google Scholar 

  • Musielak, Z.E.: In: Stars as Suns: Activity, Evolution and Planets, p. 437 (2004)

    Google Scholar 

  • Musielak, Z.E., Musielak, D.E., Mobashi, H.: Phys. Rev. E 73, 036612 (2006)

    ADS  Google Scholar 

  • Musielak, Z.E., Routh, S., Hammer, R.: Astrophys. J. 659, 650 (2007)

    ADS  Google Scholar 

  • Narain, U., Ulmschneider, P.: Space Sci. Rev. 75, 453 (1996)

    ADS  Google Scholar 

  • Parker, E.N.: Astrophys. J. 230, 905 (1979)

    ADS  Google Scholar 

  • Perera, H.K., Musielak, Z.E., Murawski, K.: Mon. Not. R. Astron. Soc. 450, 3169 (2015)

    ADS  Google Scholar 

  • Poedts, S., Hermans, D., Goossens, M.: Astron. Astrophys. 151, 16 (1985)

    ADS  Google Scholar 

  • Priest, E.: Observatory 102, 118 (1982)

    ADS  Google Scholar 

  • Roberts, B.: Geophys. Astrophys. Fluid Dyn. 62, 83 (1991)

    ADS  Google Scholar 

  • Roberts, B., Ulmschneider, P.: Eur. Meet. Sol. Phys. 75 (1997)

  • Routh, S., Musielak, Z.E., Hammer, R.: Sol. Phys. 246, 133 (2007)

    ADS  Google Scholar 

  • Routh, S., Musielak, Z.E., Hammer, R.: Astrophys. J. 709, 1297 (2010)

    ADS  Google Scholar 

  • Saito, T., Kudoh, T., Shibata, K.: Astrophys. J. 554, 1151 (2001)

    ADS  Google Scholar 

  • Solanki, S.K.: Space Sci. Rev. 63, 1 (1993)

    ADS  Google Scholar 

  • Spruit, H.C.: Sol. Phys. 75, 3 (1982)

    ADS  Google Scholar 

  • Stix, M.: Astron. Astrophys. 415, 751 (2004)

    ADS  Google Scholar 

  • Tomczyk, S., McIntosh, S.W., Keil, S.L., et al.: Science 317, 1192 (2007)

    ADS  Google Scholar 

  • Ulmschneider, P., Musielak, Z.: Current theoretical models and future high resolution solar observations: preparing for ATST, 363 (2003)

  • Van Doorsselaere, T., Nakariakov, V.M., Verwichte, E.: Astrophys. J. Lett. 676, L73 (2008)

    ADS  Google Scholar 

  • Webb, G.M., McKenzie, J.F., Hu, Q., et al.: J. Geophys. Res. Space Phys. 117, A05229 (2012)

    ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Rouppe van der Voort, L.: Astron. Astrophys. 507, L9 (2009)

    ADS  Google Scholar 

  • Wójcik, D., Murawski, K., Musielak, Z.E., et al.: Sol. Phys. 292, 31 (2017)

    ADS  Google Scholar 

  • Zirin, H., Stein, A.: Astrophys. J. Lett. 178, L85 (1972)

    ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to an anonymous referee for valuable comments and suggestions that allow us to significantly improved our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Routh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Routh, S., Musielak, Z.E., Sundar, M.N. et al. New cutoff frequency for torsional Alfv́en waves propagating along wide solar magnetic flux tubes. Astrophys Space Sci 365, 139 (2020). https://doi.org/10.1007/s10509-020-03852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03852-z

Keywords

Navigation