Skip to main content
Log in

Comparison of Fracture Test Methods for Evaluating the Crack Resistance of Asphalt Mixture

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

For the better understanding of fracture test method to evaluate the crack resistance of asphalt mixtures, the current test methods and evaluation indexes were theoretically and experimentally compared, including the indirect tensile test, single edge notch beam test, semicircular bending test (SCB) and disk-shaped compact tension test. The stress intensity factors for different tests were compared, and the appropriate range of notch depth was determined. The SCB was finally selected as the test method for evaluating the crack resistance of the asphalt mixtures. According to the relationship between the fracture energy and notch depths, the essential fracture energy of asphalt mixtures was calculated, and it was recommended as the evaluation index of asphalt mixtures for crack resistance. Furthermore, the failure process of the SCB was analyzed, and the contraflexure point on the load–displacement curve was found and defined. The fracture energy at the contraflexure point could be used to evaluate the ultimate crack resistance of the asphalt mixtures. The application of the essential fracture energy and the contraflexure point can correspond to the actuality of the asphalt pavement, which provides a reference for the crack resistance research of asphalt mixtures in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

IDT test:

Indirect tensile test

SENB test:

Single edge notch beam test

SCB test:

Semicircular bending test

DCT test:

Disk-shaped compact tension test

ENDB test:

Edge notched disk bend test

ENDC test:

Edge notched diametrically compressed test

SHRP:

Strategic highway research program

LEFM:

Linear elastic fracture mechanics

EPFM:

Elastic plastic fracture mechanics

CZM:

Cohesive zone model

CMOD:

Crack mouth opening displacement

J C :

Critical energy rate

R T :

Split tensile strength

P T :

Maximum value of the test load

σ t :

Tensile stress at the bottom of specimen

F :

Vertical load

K :

Stress intensity factor

K C :

Critical stress intensity factor

U :

The work of load

t :

Cohesion

δ :

The relative displacement of the fracture surface

T :

Mechanical strength, the maximum value of cohesion

δ f :

Failure displacement, the maximum displacement of the fracture surface

G c :

The fracture energy

U fr :

The breaking energy

References

  1. Pei, J.; Zhou, B.; Lyu, L.: e-Road: the largest energy supply of the future? Appl. Energy 241, 174–183 (2019). https://doi.org/10.1016/j.apenergy.2019.03.033

    Article  Google Scholar 

  2. Cong, L.; Peng, J.; Guo, Z.; Wang, Q.: Evaluation of fatigue cracking in asphalt mixtures based on surface energy. J. Mater. Civ. Eng. 29(3), D4015003 (2017). https://doi.org/10.1061/(asce)mt.1943-5533.0001465

    Article  Google Scholar 

  3. Gu, F.; Luo, X.; West, R.C.; Taylor, A.J.; Moore, N.D.: Energy-based crack initiation model for load-related top-down cracking in asphalt pavement. Constr. Build. Mater. 159, 587–597 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.008

    Article  Google Scholar 

  4. Zhang, Y.; Gu, F.; Birgisson, B.; Lytton, R.L.: Modelling cracking damage of asphalt mixtures under compressive monotonic and repeated loads using pseudo J-integral Paris’ law. Road Mater. Pavement 19(3), 525–535 (2018). https://doi.org/10.1080/14680629.2018.1418706

    Article  Google Scholar 

  5. Kanerva, H.K.; Vinson, T.S.; Zeng, H.: Low-temperature cracking: field validation of the thermal stress restrained specimen test. No. SHRP-A-401. 1994

  6. Gauthier, G.; Anderson, D.A.: Fracture mechanics and asphalt binders. Road Mater. Pavement 7(sup1), 9–35 (2006). https://doi.org/10.1080/14680629.2006.9690056

    Article  Google Scholar 

  7. Abdulshafi, A.; Majidzadeh, K.: J-integral and cyclic plasticity approach to fatigue and fracture of asphaltic mixtures. Transp. Res. Rec. 1034, 112–123 (1985)

    Google Scholar 

  8. EN 12697-44:2010: Bituminous mixtures—test methods for hot mix asphalt part 44: crack propagation by semi-circular bending test. European Committee for Standardization, Brussels, Belgium (2010)

  9. AASHTO TP 105-13: Standard method of test for determining the fracture energy of asphalt mixtures using the semicircular bend geometry (SCB). American Association of State and Highway Transportation Officials (2013)

  10. Wang, H.; Zhang, C.; Li, L.; You, Z.; Diab, A.: Characterization of low temperature crack resistance of crumb rubber modified asphalt mixtures using semi-circular bending tests. J. Test. Eval. 44(2), 847–855 (2016). https://doi.org/10.1520/jte20150145

    Article  Google Scholar 

  11. Zhao, Q.; Ye, Z.: A dimensional analysis on asphalt binder fracture and fatigue cracking. Front. Struct. Civ. Eng. 12(2), 201–206 (2018). https://doi.org/10.1007/s11709-017-0402-1

    Article  Google Scholar 

  12. Ling, M.; Luo, X.; Chen, Y.; Hu, S.; Lytton, R.L.: A calibrated mechanics-based model for top-down cracking of asphalt pavements. Constr. Build. Mater. 208, 102–112 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.090

    Article  Google Scholar 

  13. Fakhri, M.; Kharrazi, E.H.; Aliha, M.R.M.: Mixed mode tensile—in plane shear fracture energy determination for hot mix asphalt mixtures under intermediate temperature conditions. Eng. Fract. Mech. 192, 98–113 (2018). https://doi.org/10.1016/j.engfracmech.2018.02.007

    Article  Google Scholar 

  14. Ozer, H.; Al-Qadi, I.L.; Lambros, J.; El-Khatib, A.; Singhvi, P.; Doll, B.: Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Constr. Build. Mater. 115, 390–401 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.144

    Article  Google Scholar 

  15. Dave, E.V.; Hoplin, C.: Flexible pavement thermal cracking performance sensitivity to fracture energy variation of asphalt mixtures. Road Mater. Pavement 16(sup1), 423–441 (2015). https://doi.org/10.1080/14680629.2015.1029697

    Article  Google Scholar 

  16. Oshone, M.; Dave, E.; Sias, J.: Asphalt mix fracture energy based reflective cracking performance criteria for overlay mix selection and design for pavements in cold climates. Constr. Build. Mater. 211, 1025–1033 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.278

    Article  Google Scholar 

  17. Li, X.; Braham, A.F.; Marasteanu, M.O.; Buttlar, W.G.; Williams, R.C.: Effect of factors affecting fracture energy of asphalt concrete at low temperature. Road Mater. Pavement 9(sup1), 397–416 (2008). https://doi.org/10.1080/14680629.2008.9690176

    Article  Google Scholar 

  18. Li, X.; Marasteanu, M.O.; Kvasnak, A.; Bausano, J.; Williams, R.C.; Worel, B.: Factors study in low-temperature fracture resistance of asphalt concrete. J. Mater. Civ. Eng. 22(2), 145–152 (2010)

    Article  Google Scholar 

  19. Zhang, J.; Tan, H.; Pei, J.; Qu, T.; Liu, W.: Evaluating crack resistance of asphalt mixture based on essential fracture energy and fracture toughness. Int. J. Geomech. 19(4), 06019005 (2019). https://doi.org/10.1061/(asce)gm.1943-5622.0001390

    Article  Google Scholar 

  20. Saha, G.; Biligiri, K.P.: Fracture properties of asphalt mixtures using semi-circular bending test: a state-of-the-art review and future research. Constr. Build. Mater. 105, 103–112 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.046

    Article  Google Scholar 

  21. Huang, B.; Shu, X.; Zuo, G.: Using notched semi-circular bending fatigue test to characterize fracture resistance of asphalt mixtures. Eng. Fract. Mech. 109, 78–88 (2013). https://doi.org/10.1016/j.engfracmech.2013.07.003

    Article  Google Scholar 

  22. Im, S.; Ban, H.; Kim, Y.R.: Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry. Constr. Build. Mater. 52, 413–421 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.055

    Article  Google Scholar 

  23. Khalid, H.A.; Monney, O.K.: Moisture damage potential of cold asphalt. Int. J. Pavement Eng. 10(5), 311–318 (2009). https://doi.org/10.1080/10298430802169838

    Article  Google Scholar 

  24. Minhajuddin, M.; Saha, G.; Biligiri, K.P.: Crack propagation parametric assessment of modified asphalt mixtures using linear elastic fracture mechanics approach. J. Test. Eval. 44(1S), 1–13 (2016). https://doi.org/10.1520/jte20140510

    Article  Google Scholar 

  25. Othman, A.M.: Effect of low-density polyethylene on fracture toughness of asphalt concrete mixtures. J. Mater. Civ. Eng. 22(10), 1019–1024 (2010). https://doi.org/10.1061/(asce)mt.1943-5533.0000106

    Article  Google Scholar 

  26. Liu, J.: Low temperature cracking evaluation of asphalt rubber mixtures using semi-circular bending test. Adv. Mater. Res. 243, 4201–4206 (2011). https://doi.org/10.4028/www.scientific.net/amr.243-249.4201

    Article  Google Scholar 

  27. Mansourian, A.; Hashemi, S.; Aliha, M.R.M.: Evaluation of pure and mixed modes (I/III) fracture toughness of Portland cement concrete mixtures containing reclaimed asphalt pavement. Constr. Build. Mater. 178, 10–18 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.130

    Article  Google Scholar 

  28. Eghbali, M.R.; Tafti, M.F.; Aliha, M.R.M.; Motamedi, H.: The effect of ENDB specimen geometry on mode I fracture toughness and fracture energy of HMA and SMA mixtures at low temperatures. Eng. Fract. Mech. 216, 106496 (2019). https://doi.org/10.1016/j.engfracmech.2019.106496

    Article  Google Scholar 

  29. Motamedi, H.; Fazaeli, H.; Aliha, M.R.M.; Amiri, H.R.: Evaluation of temperature and loading rate effect on fracture toughness of fiber reinforced asphalt mixture using edge notched disc bend (ENDB) specimen. Constr. Build. Mater. 234, 117365 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117365

    Article  Google Scholar 

  30. Aliha, M.R.M.; Bahmani, A.; Akhondi, S.: Determination of mode III fracture toughness for different materials using a new designed test configuration. Mater. Des. 86, 863–871 (2015). https://doi.org/10.1016/j.matdes.2015.08.033

    Article  Google Scholar 

  31. Aliha, M.R.M.; Bahmani, A.; Akhondi, S.: A novel test specimen for investigating the mixed mode I+III fracture toughness of hot mix asphalt composites—experimental and theoretical study. Int. J. Solids Struct. 90, 167–177 (2016). https://doi.org/10.1016/j.ijsolstr.2016.03.018

    Article  Google Scholar 

  32. Aliha, M.R.M.; Sarbijan, M.J.; Bahmani, A.: Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations. Constr. Build. Mater. 155, 789–799 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.093

    Article  Google Scholar 

  33. Pour, P.H.; Aliha, M.R.M.; Keymanesh, M.R.: Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions. Eng. Fract. Mech. 190, 245–258 (2018). https://doi.org/10.1016/j.engfracmech.2017.11.007

    Article  Google Scholar 

  34. Aliha, M.R.M.; Razmi, A.; Mousavi, A.: Fracture study of concrete composites with synthetic fibers additive under modes I and III using ENDB specimen. Constr. Build. Mater. 190, 612–622 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.149

    Article  Google Scholar 

  35. Ameri, M.; Mansourian, A.; Pirmohammad, S.; Aliha, M.R.M.; Ayatollahi, M.R.: Mixed mode fracture resistance of asphalt concrete mixtures. Eng. Fract. Mech. 93, 153–167 (2012). https://doi.org/10.1016/j.engfracmech.2012.06.015

    Article  Google Scholar 

  36. Aliha, M.R.M.; Behbahani, H.; Fazaeli, H.; Rezaifar, M.H.: Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures. Constr. Build. Mater. 54, 623–635 (2014). https://doi.org/10.1016/j.conbuildmat.2013.12.097

    Article  Google Scholar 

  37. Aliha, M.R.M.; Fazaeli, H.; Aghajani, S.; Nejad, F.M.: Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures. Constr. Build. Mater. 95, 545–555 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.165

    Article  Google Scholar 

  38. Aliha, M.R.M.; Razmi, A.; Mansourian, A.: The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials. Eng. Fract. Mech. 182, 322–336 (2017). https://doi.org/10.1016/j.engfracmech.2017.06.003

    Article  Google Scholar 

  39. Aliha, M.R.M.; Fakhri, M.; Kharrazi, E.H.; Berto, F.: The effect of loading rate on fracture energy of asphalt mixture at intermediate temperatures and under different loading modes. Frattura ed Integrità Strutturale 12(43), 113–132 (2018). https://doi.org/10.3221/igf-esis.43.09

    Article  Google Scholar 

  40. Aliha, M.R.M.; Behbahani, H.; Fazaeli, H.; Rezaifar, M.H.: Experimental study on mode I fracture toughness of different asphalt mixtures. Sci. Iran 22(1), 120–130 (2015)

    Google Scholar 

  41. Industrial standards of the People’s Republic of China: JTG E20-2011 Standard Test Methods of Asphalt and Asphalt Mixture for Highway Engineering. China Communications Press, Beijing (2011)

    Google Scholar 

  42. Hofman, R.: Description of semi circular bending (SCB) test. Version 31, DWW report number IL2R298 37 (1999)

  43. Molenaar, A.; Scarpas, A.; Liu, X.; Erkens, S.: Semi-circular bending test; simple but useful? J. Assoc. Asph. Paving Technol. 71 (2002)

  44. Bayomy, F.; Mull-Aglan, M.; Abdo, A.; Santi, M.: Evaluation of hot mix asphalt (HMA) fracture resistance using the critical strain energy release rate, Jc. In: Transportation Research Board 85th Annual Meeting (2006)

  45. Tada, H.: The Stress Analysis of Cracks Handbook. Paris Productions Inc., St. Louis (1985)

    Google Scholar 

  46. Sih, G.C.; Matic, P.: A pseudo-linear analysis of yielding and crack growth: strain energy density criterion. In: Defects, Fracture and Fatigue. Springer, Dordrecht, pp. 223–232 (1983)

  47. Huang, B.; Zhang, Z.; Kingery, W.; Zuo, G.: Fatigue crack characteristics of HMA mixtures containing RAP. In: Proceeding 5th International Conference on Cracking in Pavements, RILEM, pp. 631–638 (2005)

  48. Luo, P.: Research on the Asphalt Mixture Crack Test Methods and Evaluation Indexes Based on SCB. Chang’an University, China (2017)

    Google Scholar 

  49. Ekberg, T.D.A.: Failure Fracture Fatigue, an Introduction. Student Literature, Lund (2002)

    Google Scholar 

  50. Lim, I.; Johnston, I.; Choi, S.K.: Stress intensity factors for semi-circular specimens under three-point bending. Eng. Fract. Mech. 44(3), 363–382 (1993). https://doi.org/10.1016/0013-7944(93)90030-v

    Article  Google Scholar 

  51. Ayatollahi, M.R.; Aliha, M.R.M.: Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comp. Mater. Sci. 38(4), 660–670 (2007). https://doi.org/10.1016/j.commatsci.2006.04.008

    Article  Google Scholar 

  52. Fayed, A.: Numerical evaluation of mode I/II SIF of quasi-brittle materials using cracked semi-circular bend specimen. Eng. Solid Mech. 6(2), 175–186 (2018). https://doi.org/10.5267/j.esm.2018.1.002

    Article  Google Scholar 

  53. China Aviation Research Institute. Stress Intensity Factor Handbook. Science Press, China (1993)

  54. Chinese Ministry of Transport: Technical speciications for construction of highway asphalt pavements. JTG F40-2004. China Communications Press, Beijing (2004)

  55. Lyu, G.; Hao, P.; Pang, L.; Wang, H.: Mechanical simulation of semi-circular bending test in asphalt mixtures. J. Wuhan Univ. Technol. 30(3), 58–60 (2008). https://doi.org/10.3963/j.issn.1671-4431.2008.03.015

    Article  Google Scholar 

  56. Zhang, J.; Li, X.; Liu, G.; Pei, J.: Effects of material characteristics on asphalt and filler interaction ability. Int. J. Pavement Eng. 20(8), 928–937 (2019). https://doi.org/10.1080/10298436.2017.1366765

    Article  Google Scholar 

  57. Zhang, J.; Li, X.; Ma, W.; Pei, J.: Characterizing heterogeneity of asphalt mixture based on aggregate particles movements. Iran J. Sci. Technol. A 43, 81–91 (2019). https://doi.org/10.1007/s40996-018-0125-0

    Article  Google Scholar 

  58. Zhang, J.; Fan, Z.; Wang, H.; Sun, W.; Pei, J.; Wang, D.: Prediction of dynamic modulus of asphalt mixture using micromechanical method with radial distribution functions. Mater. Struct. 52(2), 1–12 (2019). https://doi.org/10.1617/s11527-019-1348-7

    Article  Google Scholar 

  59. Ding, X.; Ma, T.; Huang, X.: Discrete-element contour-filling modeling method for micro-and macro-mechanical analysis of aggregate skeleton of asphalt mixture. J. Transp. Eng. B Pavement 145(1), 04018056 (2019)

    Article  Google Scholar 

  60. Li, J.; Zhang, J.; Qian, G.; Zheng, J.; Zhang, Y.: Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation. J. Mater. Civ. Eng. 31(3), 04019004 (2019). https://doi.org/10.1061/(asce)mt.1943-5533.0002623

    Article  Google Scholar 

  61. Ministry of Transport of PR China (MTPRC): Specifications for design of highway asphalt pavement. JTGD50-2017. Beijing: China Communications Press (2017)

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFE0103800), the Department of Science & Technology of Shaanxi Province (Nos. 2017KCT-13), China Postdoctoral Science Foundation (Nos. 2017M620434), Shaanxi Postdoctoral Grant Program (No. 2017BSHYDZZ17), and the Special Fund for Basic Scientific Research of Central College of Chang’an University (Nos. 310821153502 and 310821173501). The authors gratefully acknowledge their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiupeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Pei, J., Zhang, J. et al. Comparison of Fracture Test Methods for Evaluating the Crack Resistance of Asphalt Mixture. Arab J Sci Eng 45, 8745–8758 (2020). https://doi.org/10.1007/s13369-020-04838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04838-3

Keywords

Navigation