Skip to main content
Log in

Prediction on Phase Stabilities of the Zr–H System from the First-Principles

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Basic fundamentals governing the hydrogenation of Zr and its alloys have both theoretical and practical importance. In this work, first-principles calculations have been performed to evaluate the relative stabilities of various possible phases in ZrHx (x = 1–2) under different temperatures and pressures. It was predicted that fct-γ and ε phases with various different H-atom configurations can be energetically favorable for ZrHx (x = 1, 1.25 and 1.5), while ZrH1.75 and ZrH2 prefer fct-ε phase only. Fcc-δ phase is less favored in energy at any H concentrations, but can be mechanically stable in some cases. The thermodynamically stable and metastable phase stability diagrams were then constructed for a wide temperature and H concentration range, to predict the environment-dependent formation of ZrHx during hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.W. Bickel, T.G. Berlincourt, Phys. Rev. B 2, 4807 (1970)

    Google Scholar 

  2. K.B. Colas, A.T. Motta, J.D. Almer, M.R. Daymond, M. Kerr, A.D. Banchik, P. Vizcaino, J.R. Santisteban, Acta Mater. 58, 6575 (2010)

    CAS  Google Scholar 

  3. A. Singh, P. Kuppusami, R. Thirumurugesan, R. Ramaseshan, M. Kamruddin, S. Dash, V. Ganesan, E. Mohandas, Appl. Surf. Sci. 257, 9909 (2011)

    CAS  Google Scholar 

  4. H.O. Pierson, ed. 4 - carbides of group IV: Titanium, zirconium, and hafnium carbides. in Handbook of Refractory Carbides and Nitrides (William Andrew Publishing, Westwood, NJ, 1996), pp. 55–80

    Google Scholar 

  5. G.J. Cheng, G. Huang, M. Chen, X.S. Zhou, J.H. Liu, S.M. Peng, W. Ding, H.F. Wang, L.Q. Shi, J. Nucl. Mater. 499, 490 (2018)

    CAS  Google Scholar 

  6. C.E. Ells, J. Nucl. Mater. 28, 129 (1968)

    CAS  Google Scholar 

  7. M.P. Cassidy, C.M. Wayman, Metall. Trans. A 11, 57 (1980)

    Google Scholar 

  8. R.C. Bowman, B.D. Craft, J. Phys. C: Solid State Phys. 17, L477 (1984)

    CAS  Google Scholar 

  9. R.C. Bowman, E.L. Venturini, B.D. Craft, A. Attalla, D.B. Sullenger, Phys. Rev. B 27, 1474 (1983)

    CAS  Google Scholar 

  10. K. Niedźwiedź, B. Nowak, O.J. Żogał, J. Alloys Compd. 194, 47 (1993)

    Google Scholar 

  11. R.C. Bowman Jr., B.D. Craft, J.S. Cantrell, E.L. Venturini, Phys. Rev. B 31, 5604 (1985)

    CAS  Google Scholar 

  12. O.J. Żogal, A.H. Vuorimäki, E.E. Ylinen, K. Niedźwiedź, Z. Phys. B: Condens. Matter 96, 293 (1995)

    Google Scholar 

  13. E. Zuzek, J.P. Abriata, A. San-Martin, F.D. Manchester, Bull. Alloy Phase Diagr 11, 385 (1990)

    CAS  Google Scholar 

  14. A. Aladjem, Solid State Phenom. 49–50, 281 (1996)

    Google Scholar 

  15. J.S. Cantrell, R.C. Bowman Jr., D.B. Sullenger, J. Phys. Chem. 88, 918 (1984)

    CAS  Google Scholar 

  16. J.H. Weaver, D.J. Peterman, D.T. Peterson, A. Franciosi, Phys. Rev. B 23, 1692 (1981)

    CAS  Google Scholar 

  17. B.W. Veal, D.J. Lam, D.G. Westlake, Phys. Rev. B 19, 2856 (1979)

    CAS  Google Scholar 

  18. K.G. Barraclough, C.J. Beevers, J. Nucl. Mater. 34, 125 (1970)

    CAS  Google Scholar 

  19. D.O. Northwood, U. Kosasih, Int. Mater. Rev. 28, 92 (1983)

    CAS  Google Scholar 

  20. A.M. Solodinin, E.B. Boyko, R.A. Andriyevskiy, Izv. Akad. Nauk SSSR, Met. 1, 198 (1978) in Russian; TR: Russ. Metall. 1, 178 (1978)

  21. B. Siegel, G.G. Libowitz, Metal Hydrides, Chap. 12, 545 (1968)

  22. S. Mishra, K.S. Sivaramakrihnan, M.K. Asundi, J. Nucl. Mater. 45, 235 (1972)

    CAS  Google Scholar 

  23. K.G. Barraclough, C.J. Beevers, J. Less Common Met. 35, 177 (1974)

    CAS  Google Scholar 

  24. R.W. Cahn, Adv. Mater. 3, 628 (1991)

    Google Scholar 

  25. F. Ducastelle, R. Caudron, P. Costa, J. Phys. 31, 57 (1970)

    CAS  Google Scholar 

  26. M. Gupta, J.P. Burger, Phys. Rev. B 24, 7099 (1981)

    CAS  Google Scholar 

  27. A.C. Switendick, J. Less Common Met. 101, 191 (1984)

    CAS  Google Scholar 

  28. D.A. Papaconstantopoulos, A.C. Switendick, J. Less Common Met. 103, 317 (1984)

    CAS  Google Scholar 

  29. G.J. Ackland, Phys. Rev. Lett. 80, 2233 (1998)

    CAS  Google Scholar 

  30. M. Gupta, Phys. Rev. Lett. 81, 3300 (1998)

    CAS  Google Scholar 

  31. M. Gupta, Phys. Rev. B 25, 1027 (1982)

    CAS  Google Scholar 

  32. R. Quijano, R. de Coss, D.J. Singh, Phys. Rev. B 80, 184103 (2009)

    Google Scholar 

  33. F. Wang, H.R. Gong, Int. J. Hydrog. Energy 37, 9688 (2012)

    CAS  Google Scholar 

  34. C. Domain, R. Besson, A. Legris, Acta Mater. 50, 3513 (2002)

    CAS  Google Scholar 

  35. H.L. Yakel, Acta Crystall. 11, 46 (1958)

    CAS  Google Scholar 

  36. W. Wolf, P. Herzig, J. Phys.: Condens. Matter 12, 4535 (2000)

    CAS  Google Scholar 

  37. J. Furthmuller, J. Hafner, G. Kresse, Phys. Rev. B 50, 15606 (1994)

    CAS  Google Scholar 

  38. W. Dong, G. Kresse, J. Furthmuller, J. Hafner, Phys. Rev. B 54, 2157 (1996)

    CAS  Google Scholar 

  39. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    CAS  Google Scholar 

  40. J. Leese, A.E. Lord, J. Appl. Phys. 39, 3986 (1968)

    CAS  Google Scholar 

  41. R. Khodabakhsh, D.K. Ross, J. Phys. F: Met. Phys. 12, 15 (1982)

    CAS  Google Scholar 

  42. G.C. Weatherly, Acta Metall. 29, 501 (1981)

    CAS  Google Scholar 

  43. J.S. Cantrell, R.C.J. Bowman, D.B. Sullenger, Chem. Inform. 15, 918 (1984)

    Google Scholar 

  44. R. Quijano, R. Decoss, D.J. Singh, Phys. Rev. B 80, 2665 (2009)

    Google Scholar 

  45. P. Zhang, B.T. Wang, C.H. He, P. Zhang, Comput. Mater. Sci. 50, 3297 (2011)

    CAS  Google Scholar 

  46. J. F. Nye, Oxford University Press (1958)

  47. F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)

    Google Scholar 

  48. P.J. Dobson, Phys. Bull. 36, 506 (1985)

    Google Scholar 

  49. Y. Jiang, J.B. Adams, M. van Schilfgaarde, J. Chem. Phys. 123, 64701 (2005)

    Google Scholar 

  50. F.D. Rossini, JANAF thermochemical tables: Stull, D. R. and Prophet, M. U.S. Government Printing Office: Washington. Second edition, 1971. J. Chem. Thermodyn. 4, 509 (1972)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National MCF Energy R&D Program of China (Project No. 2018YFE0306100) and the National Natural Science Foundation of China (No. 51971249).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Jiang or Shuming Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Qin, W., Hu, Y. et al. Prediction on Phase Stabilities of the Zr–H System from the First-Principles. Acta Metall. Sin. (Engl. Lett.) 34, 514–522 (2021). https://doi.org/10.1007/s40195-020-01113-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01113-0

Keywords

Navigation