Skip to main content

Advertisement

Log in

Comparison of polysaccharide glycoconjugates as candidate vaccines to combat Clostridiodes (Clostridium) difficile

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Two known Clostridiodes (Clostridium) difficile surface antigens, a lipoteichoic acid (LTA) and a polysaccharide (PS-II) were isolated and purified in order to prepare glycoconjugate vaccines to the carrier protein human serum albumin utilising a reductive amination strategy. Mice and rabbits were immunized with a prime and two boost strategy and the resulting sera were examined for their ability to recognise the purified homologous antigens and subsequently killed whole cells of C. difficile strains and other Clostridia species. Immunisation derived antisera from rabbits and mice, recognised all strains of C. difficile vegetative cells examined, with generally similar titers from animals that received the LTA or the PS-II conjugates. Sera raised to the LTA conjugates were able to recognise other Clostridia species C. butyricum, C. bifermentans and C. subterminale whereas sera raised to the PS-II conjugates were not. These LTA and PS-II sera recognised live cells in an immunofluorescence assay and were also able to recognise the spore form of the bacterium. This study has confirmed that the LTA and PS-II polysaccharides are both highly conserved surface polymers of C. difficile that are easily accessible to the immune system and as such may have potential as vaccine antigens or as targets for therapeutics to combat C. difficile infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shah, D., Dang, M.-D., Hasbun, R., Koo, H.L., Jiang, Z.-D., DuPont, H.L., Garey, K.W.: Clostridium difficile infection: update on emerging antibiotic treatment options and antibiotic resistance. Exp. Rev. Anti-Infect. Ther. 8, 555–564 (2010)

    Article  CAS  Google Scholar 

  2. Mascio, C.T.M., Mortin, L.I., Howland, K.T., van Praagh, A.D.G., Zhang, S., Arya, A., Chuong, C.L., Kang, C., Li, T., Silverman, J.A.: In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile. Antimicrob. Ag. Chemother. 56, 5023–5030 (2012)

    Article  CAS  Google Scholar 

  3. Spigaglia, P.: Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Inf. Dis. 3, 23–42 (2016)

    CAS  Google Scholar 

  4. Lowy, I., Molrine, D.C., Leav, B.A., Blair, B.M., Baxter, R., Gerding, D.N., Nichol, G., Thomas Jr., W.D., Leney, M., Sloan, S., Hay, C.A., Ambrosino, D.M.: Treatment with monoclonal antibodies against Clostridium difficile toxins. New Engl. J. Med. 362, 197–205 (2010)

    Article  CAS  Google Scholar 

  5. Hussack, G., Arbabi-Ghahroudi, M., van Faassen, H., Songer, J.G., Ng, K.K.-S., MacKenzie, R., Tanha, J.: Neutralization of Clostridium difficile toxin a with single-domain antibodies targeting the cell receptor binding domain. J. Biol. Chem. 286, 8961–8976 (2011)

    Article  CAS  Google Scholar 

  6. Farooq, P.D., Urrunaga, N.H., Tang, D.M., von Rosenvinge, E.C.: Pseudomembranous colitis. Dis. Mon. 61, 181–206 (2015)

    Article  Google Scholar 

  7. Lawrence, B., Reddy, S.S.: Fecal microbiota transplantation for recurrent Clostridium difficile infection. J. Clin. Gastro. 45, S159–S167 (2011)

    Article  Google Scholar 

  8. Péchiné, S., Bruxelle, J.F., Janoir, C., Collignon, A.: Targeting Clostridium difficile surface components to develop immunotherapeutic strategies against Clostridium difficile infection. Front. Micro. 9, 1009–1019 (2018)

    Article  Google Scholar 

  9. Poxton, I.R., Ivor Cartmill, T.D.: Immunochemistry of the cell-surface carbohydrate antigens of Clostridium difficile. J. Gen. Microbiol. 128, 1365–1370 (1982)

    CAS  PubMed  Google Scholar 

  10. Poxton, I.R., Byrne, M.D.: Immunological analysis of the EDTA-soluble antigens of Clostridium difficile and related species. J. Gen. Microbiol. 122, 41–46 (1981)

    CAS  PubMed  Google Scholar 

  11. Ganeshapillai, J., Vinogradov, E., Rousseau, J., Weese, J.S., Monteiro, M.A.: Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units. Carbohydr. Res. 343, 703–710 (2008)

    Article  CAS  Google Scholar 

  12. Monteiro, M.A., Ma, Z., Bertolo, L., Jiao, Y., Arroyo, L., Hodgins, D., Mallozzi, M., Vedantam, G., Sagermann, M., Sundsmo, J., Chow, H.: Carbohydrate-based Clostridium difficile vaccines. Exp. Rev. Vacc. 12, 421–431 (2013)

    Article  CAS  Google Scholar 

  13. Danieli, E., Lay, L., Proietti, P., Berti, F., Costantino, P., Adamo, R.: First synthesis of C. difficile PS-II cell wall polysaccharide repeating unit. Org. Letts. 13, 378–381 (2011)

    Article  CAS  Google Scholar 

  14. Adamo, R., Romano, M.R., Berti, F., Leuzzi, R., Tontini, M., Danieli, E.: Phosphorylation of the synthetic hexasaccharide repeating unit is essential for the induction of antibodies to Clostridium difficile PS-II cell wall polysaccharide. ACS Chem. Biol. 7, 1420–1428 (2012)

    Article  CAS  Google Scholar 

  15. Oberli, M.A., Hecht, M.-L., Bindschlader, P., Adibekian, A., Adam, T., Seeberger, P.H.: A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem. Biol. 18, 580–588 (2011)

    Article  CAS  Google Scholar 

  16. Martin, C.E., Broecker, F., Oberli, M.A., Komor, J., Mattner, J., Anish, C., Seeberger, P.H.: Immunological evaluation of a synthetic Clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. J. Am. Chem. Soc. 135, 9713–9722 (2013)

    Article  CAS  Google Scholar 

  17. Romano, M.R., Leuzzi, R., Cappelletti, E., Tontini, M., Nilo, A., Proietti, D., Berti, F., Costantino, P., Adamo, R., Scarselli, M.: Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins (Basel). 6(1385–1396), 1385–1396 (2014)

    Article  Google Scholar 

  18. Monteiro, M.A.: The design of a Clostridium difficile carbohydrate-based vaccine. Methods Mol. Biol. 1403, 397–408 (2016)

    Article  Google Scholar 

  19. Bertolo, L., Boncheff, A.G., Ma, Z., Chen, Y.H., Wakeford, T., Friendship, R.M., Rosseau, J., Weese, J.S., Chu, M., Mallozzi, M., Vedantam, G., Monteiro, M.A.: Clostridium difficile carbohydrates: Glucan in spores, PSII common antigen in cells, immunogenicity of PSII in swine and synthesis of a dual C. difficile-ETEC conjugate vaccine. Carbohydr. Res. 354, 79–86 (2012)

    Article  CAS  Google Scholar 

  20. Reid, C.W., Vinogradov, E., Li, J., Jarrell, H.C., Logan, S.M., Brisson, J.-R.: Structural characterization of surface glycans from Clostridium difficile. Carbohydr. Res. 354, 65–73 (2012)

    Article  CAS  Google Scholar 

  21. Cox, A.D., St. Michael, F., Aubry, A., Cairns, C., Strong, P., Hayes, A., Logan, S.M.: Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile. Glycoconj. J. 30, 843–855 (2013)

    Article  CAS  Google Scholar 

  22. Martin, C.E., Broecker, F., Eller, S., Oberli, M.A., Anish, C., Pereira, C.L., Seeberger, P.H.: Glycan arrays containing Clostridium difficile lipoteichoic acid oligomers as tools towards a carbohydrate vaccine. Chem. Comm (Camb.). 49, 7159–7161 (2013)

    Article  CAS  Google Scholar 

  23. Broecker, F., Hanske, J., Martin, C.E., Baek, J.Y., Wahlbrink, A., Wojcik, F., Hartmann, L., Rademacher, C., Anish, C., Seeberger, P.H.: Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Nat. Commun. 7, 11224–11235 (2016)

    Article  CAS  Google Scholar 

  24. Broecker, F., Martin, C.E., Wegner, E., Mattner, J., Baek, J.Y., Pereira, C.L., Anish, C., Seeberger, P.H.: Synthetic lipoteichoic acid glycans are potential vaccine candidates to protect from Clostridium difficile infections. Chem. Cell. Biol. 23, 1014–1022 (2016)

    Article  CAS  Google Scholar 

  25. Broecker, F., Wegner, E., Seco, B.M.S., Kaplonek, P., Bräutigam, M., Ensser, A., Pfister, F., Daniel, C., Martin, C.E., Mattner, J., Seeberger, P.H.: Synthetic oligosaccharide-based vaccines protect mice from Clostridioides difficile infections. ACS Chem. Biol. 14, 2720–2728 (2019)

    Article  CAS  Google Scholar 

  26. Chu, M., Mallozzi, M.J.G., Roxas, B.P. Bertolo,L., Monteiro, M.A., Agellon, A., Viswanathan, V.K., Vedantam, G.: A Clostridium difficile cell wall glycopolymer locus influences bacterial shape, polysaccharide production and virulence. PLoS Pathog. (2016) https://doi.org/10.1371/journal.ppat.1005946, 12, e1005946

  27. Leuzzi, R., Adamo, R., Scarselli, M.: Vaccines against Clostridium difficile. Hum. Vaccin. Immunother. 10, 1466–1477 (2014)

    Article  CAS  Google Scholar 

  28. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  29. St. Michael, F., Yang, Q., Cairns, C., Vinogradov, E., Hayes, A.C., Aubry, A., Cox, A.D.: Investigating the candidacy of the serotype specific rhamnan polysaccharide based glycoconjugates to prevent disease caused by the dental pathogen Streptococcus mutans. Glycoconj. J. 35, 53–64 (2018)

    Article  CAS  Google Scholar 

  30. Rappuoli, R., et al.: Sci. Transl. Med. 10, eaat4615 (2018)

    Article  Google Scholar 

  31. Wenzel, C.Q., Mills, D.C., Dobruchowska, J.M., Vlach, J., Nothaft, H., Nation, P., Azadi, P., Melville, S.B., Carlson, R.W., Feldman, M.F., Szymanski, C.M.: An atypical lipoteichoic acid from Clostridium perfringens elicits a broadly cross-reactive and protective immune response. J. Biol. Chem. https://doi.org/10.1074/jbc.RA119.009978

  32. Kimbrell, M.R., Warshakoon, H., Cromer, J.R., Malladi, S., Hood, J.D., Balakrishna, R., Scholdberg, T.A., David, S.A.: Comparison of the immunostimulatory and proinflammatory activities of candidate gram-positive endotoxins, lipoteichoic acid, peptidoglycan, and lipopeptides, in murine and human cells. Immunol. Lett. 118, 132–141 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.D. Cox.

Ethics declarations

Conflicts of interest/competing interests

None to declare.

Ethics approval

All animal work follows NRC’s Human Health Therapeutics Research Centre’s animal care committee approved procedures that fall under the Canadian Council of Animal Care jurisdiction.

Consent to participate

Not applicable.

Consent for publication

All authors have consented to publish this material.

Availability of data and material

All data has been disclosed.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Glycoconjugate vaccines: classic and novel approaches

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, A., St. Michael, F., Aubry, A. et al. Comparison of polysaccharide glycoconjugates as candidate vaccines to combat Clostridiodes (Clostridium) difficile. Glycoconj J 38, 493–508 (2021). https://doi.org/10.1007/s10719-020-09937-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09937-9

Keywords

Navigation