Skip to main content

Advertisement

Log in

Guanosine Neuroprotection of Presynaptic Mitochondrial Calcium Homeostasis in a Mouse Study with Amyloid-β Oligomers

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyloid-β oligomers (AβOs) toxicity causes mitochondrial dysfunction, leading to synaptic failure in Alzheimer’s disease (AD). Considering presynaptic high energy demand and tight Ca2+ regulation, impairment of mitochondrial function can lead to deteriorated neural activity and cell death. In this study, an AD mouse model induced by ICV (intracerebroventricular) injection of AβOs was used to investigate the toxicity of AβOs on presynaptic function. As a therapeutic approach, GUO (guanosine) was given by oral route to evaluate the neuroprotective effects on this AD model. Following 24 h and 48 h from the model induction, behavioral tasks and biochemical analyses were performed, respectively. AβOs impaired object recognition (OR) short-term memory and reduced glutamate uptake and oxidation in the hippocampus. Moreover, AβOs decreased spare respiratory capacity, reduced ATP levels, impaired Ca2+ handling, and caused mitochondrial swelling in hippocampal synaptosomes. Guanosine crossed the BBB, recovered OR short-term memory, reestablished glutamate uptake, recovered mitochondrial Ca2+ homeostasis, and partially prevented mitochondrial swelling. Therefore, this endogenous purine presented a neuroprotective effect on presynaptic mitochondria and should be considered for further studies in AD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer's disease. Lancet 388(10043):505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  CAS  PubMed  Google Scholar 

  2. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Figueiredo CP, Clarke JR, Ledo JH, Ribeiro FC, Costa CV, Melo HM, Mota-Sales AP, Saraiva LM et al (2013) Memantine rescues transient cognitive impairment caused by high-molecular-weight abeta oligomers but not the persistent impairment induced by low-molecular-weight oligomers. J Neurosci 33(23):9626–9634. https://doi.org/10.1523/jneurosci.0482-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG (2015) Soluble amyloid-beta oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front Cell Neurosci 9:191. https://doi.org/10.3389/fncel.2015.00191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Birnbaum JH, Bali J, Rajendran L, Nitsch RM, Tackenberg C (2015) Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss. Cell Death Dis 6:e1791. https://doi.org/10.1038/cddis.2015.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS (2018) N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer's disease. Alzheimers Dement 14(10):1302–1312. https://doi.org/10.1016/j.jalz.2018.05.017

    Article  PubMed  Google Scholar 

  7. Kabogo D, Rauw G, Amritraj A, Baker G, Kar S (2010) ß-amyloid-related peptides potentiate K+-evoked glutamate release from adult rat hippocampal slices. Neurobiol Aging 31(7):1164–1172. https://doi.org/10.1016/j.neurobiolaging.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  8. Mahmoud S, Gharagozloo M, Simard C, Gris D (2019) Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8(2). https://doi.org/10.3390/cells8020184

  9. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875. https://doi.org/10.1523/jneurosci.4970-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicholls DG (2009) Spare respiratory capacity, oxidative stress and excitotoxicity. Biochem Soc Trans 37(Pt 6):1385–1388. https://doi.org/10.1042/BST0371385

    Article  CAS  PubMed  Google Scholar 

  11. Sivanesan S, Tan A, Rajadas J (2013) Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer Res 10(3):316–323

    CAS  PubMed  Google Scholar 

  12. Cenini G, Voos W (2019) Mitochondria as potential targets in Alzheimer disease therapy: an update. Front Pharmacol 10:902. https://doi.org/10.3389/fphar.2019.00902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicholls DG (2009) Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 1787(11):1416–1424. https://doi.org/10.1016/j.bbabio.2009.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer's disease. J Alzheimers Dis 57(4):1087–1103. https://doi.org/10.3233/JAD-160726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, Shirendeb UP, Calkins MJ et al (2012) Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta 1822(5):639–649. https://doi.org/10.1016/j.bbadis.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  16. Cittolin-Santos GF, de Assis AM, Guazzelli PA, Paniz LG, da Silva JS, Calcagnotto ME, Hansel G, Zenki KC et al (2017) Guanosine exerts neuroprotective effect in an experimental model of acute ammonia intoxication. Mol Neurobiol 54(5):3137–3148. https://doi.org/10.1007/s12035-016-9892-4

    Article  CAS  PubMed  Google Scholar 

  17. Paniz LG, Calcagnotto ME, Pandolfo P, Machado DG, Santos GF, Hansel G, Almeida RF, Bruch RS et al (2014) Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy. Metab Brain Dis 29(3):645–654. https://doi.org/10.1007/s11011-014-9548-x

    Article  CAS  PubMed  Google Scholar 

  18. Dal-Cim T, Martins WC, Thomaz DT, Coelho V, Poluceno GG, Lanznaster D, Vandresen-Filho S, Tasca CI (2016) Neuroprotection promoted by guanosine depends on glutamine synthetase and glutamate transporters activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurotox Res 29(4):460–468. https://doi.org/10.1007/s12640-015-9595-z

    Article  CAS  PubMed  Google Scholar 

  19. Hansel G, Ramos DB, Delgado CA, Souza DG, Almeida RF, Portela LV, Quincozes-Santos A, Souza DO (2014) The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS One 9(2):e90693. https://doi.org/10.1371/journal.pone.0090693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt AP, Lara DR, de Faria Maraschin J, da Silveira Perla A, Onofre Souza D (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864(1):40–43

    CAS  PubMed  Google Scholar 

  21. Tasca CI, Lanznaster D, Oliveira KA, Fernández-Dueñas V, Ciruela F (2018) Neuromodulatory effects of guanine-based purines in health and disease. Front Cell Neurosci 12:376. https://doi.org/10.3389/fncel.2018.00376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Halliday G (2017) Pathology and hippocampal atrophy in Alzheimer's disease. Lancet Neurol 16(11):862–864. https://doi.org/10.1016/S1474-4422(17)30343-5

    Article  PubMed  Google Scholar 

  23. Choi SW, Gerencser AA, Nicholls DG (2009) Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 109(4):1179–1191. https://doi.org/10.1111/j.1471-4159.2009.06055.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease. Lancet Neurol 10(2):187–198. https://doi.org/10.1016/S1474-4422(10)70277-5

    Article  CAS  PubMed  Google Scholar 

  25. Tamagno E, Bardini P, Guglielmotto M, Danni O, Tabaton M (2006) The various aggregation states of beta-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med 41(2):202–212. https://doi.org/10.1016/j.freeradbiomed.2006.01.021

    Article  CAS  PubMed  Google Scholar 

  26. Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J (2015) Analyzing dendritic spine pathology in Alzheimer's disease: problems and opportunities. Acta Neuropathol 130(1):1–19. https://doi.org/10.1007/s00401-015-1449-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanaka H, Sakaguchi D, Hirano T (2019) Amyloid-β oligomers suppress subunit-specific glutamate receptor increase during LTP. Alzheimers Dement 5:797–808. https://doi.org/10.1016/j.trci.2019.10.003

    Article  Google Scholar 

  28. Calvo-Rodríguez M, García-Durillo M, Villalobos C, Núñez L (2016) Aging enables Ca2+ overload and apoptosis induced by amyloid-β oligomers in rat hippocampal neurons: neuroprotection by non-steroidal anti-inflammatory drugs and R-flurbiprofen in aging neurons. J Alzheimers Dis 54(1):207–221. https://doi.org/10.3233/JAD-151189

    Article  CAS  PubMed  Google Scholar 

  29. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119–130. https://doi.org/10.1038/nrn1607

    Article  CAS  PubMed  Google Scholar 

  30. Nicole O, Hadzibegovic S, Gajda J, Bontempi B, Bem T, Meyrand P (2016) Soluble amyloid beta oligomers block the learning-induced increase in hippocampal sharp wave-ripple rate and impair spatial memory formation. Sci Rep 6:22728. https://doi.org/10.1038/srep22728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vinadé ER, Schmidt AP, Frizzo ME, Izquierdo I, Elisabetsky E, Souza DO (2003) Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res 977(1):97–102. https://doi.org/10.1016/s0006-8993(03)02769-0

    Article  PubMed  Google Scholar 

  32. Frizzo ME, Schwalm FD, Frizzo JK, Soares FA, Souza DO (2005) Guanosine enhances glutamate transport capacity in brain cortical slices. Cell Mol Neurobiol 25(5):913–921. https://doi.org/10.1007/s10571-005-4939-5

    Article  PubMed  Google Scholar 

  33. Frizzo ME, Antunes Soares FA, Dall'Onder LP, Lara DR, Swanson RA, Souza DO (2003) Extracellular conversion of guanine-based purines to guanosine specifically enhances astrocyte glutamate uptake. Brain Res 972(1–2):84–89

    CAS  PubMed  Google Scholar 

  34. Vinadé ER, Schmidt AP, Frizzo ME, Portela LV, Soares FA, Schwalm FD, Elisabetsky E, Izquierdo I et al (2005) Effects of chronic administered guanosine on behavioral parameters and brain glutamate uptake in rats. J Neurosci Res 79(1–2):248–253. https://doi.org/10.1002/jnr.20327

    Article  CAS  PubMed  Google Scholar 

  35. Roesler R, Vianna MR, Lara DR, Izquierdo I, Schmidt AP, Souza DO (2000) Guanosine impairs inhibitory avoidance performance in rats. Neuroreport 11(11):2537–2540. https://doi.org/10.1097/00001756-200008030-00038

    Article  CAS  PubMed  Google Scholar 

  36. Barros DM, Izquierdo LA, Medina JH, Izquierdo I (2003) Pharmacological findings contribute to the understanding of the main physiological mechanisms of memory retrieval. Curr Drug Targets CNS Neurol Disord 2(2):81–94. https://doi.org/10.2174/1568007033482931

    Article  CAS  PubMed  Google Scholar 

  37. Bliss T, Collingridge GL (2019) Persistent memories of long-term potentiation and the. Brain Neurosci Adv 3:2398212819848213. https://doi.org/10.1177/2398212819848213

    Article  PubMed  PubMed Central  Google Scholar 

  38. Feld GB, Born J (2020) Neurochemical mechanisms for memory processing during sleep: basic findings in humans and neuropsychiatric implications. Neuropsychopharmacology 45(1):31–44. https://doi.org/10.1038/s41386-019-0490-9

    Article  PubMed  Google Scholar 

  39. Soares FA, Schmidt AP, Farina M, Frizzo ME, Tavares RG, Portela LV, Lara DR, Souza DO (2004) Anticonvulsant effect of GMP depends on its conversion to guanosine. Brain Res 1005(1–2):182–186. https://doi.org/10.1016/j.brainres.2004.01.053

    Article  CAS  PubMed  Google Scholar 

  40. Saute JA, da Silveira LE, Soares FA, Martini LH, Souza DO, Ganzella M (2006) Amnesic effect of GMP depends on its conversion to guanosine. Neurobiol Learn Mem 85(3):206–212. https://doi.org/10.1016/j.nlm.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116(3):401–416. https://doi.org/10.1016/j.pharmthera.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  42. Ganzella M, Moreira JD, Almeida RF, Böhmer AE, Saute JA, Holmseth S, Souza DO (2012) Effects of 3 weeks GMP oral administration on glutamatergic parameters in mice neocortex. Purinergic Signal 8(1):49–58. https://doi.org/10.1007/s11302-011-9258-3

    Article  CAS  PubMed  Google Scholar 

  43. Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel CB, Tasca CI (2019) Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A. Purinergic Signal 15(4):465–476. https://doi.org/10.1007/s11302-019-09679-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lanznaster D, Massari CM, Marková V, Šimková T, Duroux R, Jacobson KA, Fernández-Dueñas V, Tasca CI et al (2019) Adenosine A. Cells 8(12). https://doi.org/10.3390/cells8121630

  45. Dal-Cim T, Ludka FK, Martins WC, Reginato C, Parada E, Egea J, López MG, Tasca CI (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126(4):437–450. https://doi.org/10.1111/jnc.12324

    Article  CAS  PubMed  Google Scholar 

  46. Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO, Ganzella M, Souza DO (2017) Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol 54(1):423–436. https://doi.org/10.1007/s12035-015-9660-x

    Article  CAS  PubMed  Google Scholar 

  47. Dobrachinski F, Gerbatin RR, Sartori G, Golombieski RM, Antoniazzi A, Nogueira CW, Royes LF, Fighera MR et al (2019) Guanosine attenuates behavioral deficits after traumatic brain injury by modulation of adenosinergic receptors. Mol Neurobiol 56(5):3145–3158. https://doi.org/10.1007/s12035-018-1296-1

    Article  CAS  PubMed  Google Scholar 

  48. Lanznaster D, Mack JM, Coelho V, Ganzella M, Almeida RF, Dal-Cim T, Hansel G, Zimmer ER et al (2017) Guanosine prevents anhedonic-like behavior and impairment in hippocampal glutamate transport following amyloid-beta1-40 administration in mice. Mol Neurobiol 54(7):5482–5496. https://doi.org/10.1007/s12035-016-0082-1

    Article  CAS  PubMed  Google Scholar 

  49. Steinmetz KL, Spack EG (2009) The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 9(Suppl 1):S2. https://doi.org/10.1186/1471-2377-9-S1-S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47(3):264–272. https://doi.org/10.1016/j.ceca.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  51. Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG (2013) Amyloid-beta1–42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci 33(12):5312–5318. https://doi.org/10.1523/jneurosci.5274-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sedlak TW, Paul BD, Parker GM, Hester LD, Snowman AM, Taniguchi Y, Kamiya A, Snyder SH et al (2019) The glutathione cycle shapes synaptic glutamate activity. Proc Natl Acad Sci U S A 116(7):2701–2706. https://doi.org/10.1073/pnas.1817885116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Butterfield DA, Boyd-Kimball D (2018) Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer's disease. J Alzheimers Dis 62(3):1345–1367. https://doi.org/10.3233/JAD-170543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6

    Article  CAS  PubMed  Google Scholar 

  55. Boveris A, Cadenas E (2000) Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50(4–5):245–250. https://doi.org/10.1080/713803732

    Article  CAS  PubMed  Google Scholar 

  56. Souza DG, Bellaver B, Bobermin LD, Souza DO, Quincozes-Santos A (2016) Anti-aging effects of guanosine in glial cells. Purinergic Signal 12(4):697–706. https://doi.org/10.1007/s11302-016-9533-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jadiya P, Kolmetzky DW, Tomar D, Di Meco A, Lombardi AA, Lambert JP, Luongo TS, Ludtmann MH et al (2019) Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease. Nat Commun 10(1):3885. https://doi.org/10.1038/s41467-019-11813-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qiu J, Tan YW, Hagenston AM, Martel MA, Kneisel N, Skehel PA, Wyllie DJ, Bading H et al (2013) Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 4:2034. https://doi.org/10.1038/ncomms3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pérez MJ, Ponce DP, Aranguiz A, Behrens MI, Quintanilla RA (2018) Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease. Redox Biol 19:290–300. https://doi.org/10.1016/j.redox.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901. https://doi.org/10.1016/j.neuron.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  61. Mnatsakanyan N, Beutner G, Porter GA, Alavian KN, Jonas EA (2017) Physiological roles of the mitochondrial permeability transition pore. J Bioenerg Biomembr 49(1):13–25. https://doi.org/10.1007/s10863-016-9652-1

    Article  CAS  PubMed  Google Scholar 

  62. Chen X, Xie C, Sun L, Ding J, Cai H (2015) Longitudinal metabolomics profiling of Parkinson's disease-related α-synuclein A53T transgenic mice. PLoS One 10(8):e0136612. https://doi.org/10.1371/journal.pone.0136612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Massari CM, López-Cano M, Núñez F, Fernández-Dueñas V, Tasca CI, Ciruela F (2017) Antiparkinsonian efficacy of guanosine in rodent models of movement disorder. Front Pharmacol 8:700. https://doi.org/10.3389/fphar.2017.00700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vinadé ER, Izquierdo I, Lara DR, Schmidt AP, Souza DO (2004) Oral administration of guanosine impairs inhibitory avoidance performance in rats and mice. Neurobiol Learn Mem 81(2):137–143. https://doi.org/10.1016/j.nlm.2003.12.003

    Article  CAS  PubMed  Google Scholar 

  66. Lara DR, Schmidt AP, Frizzo MES, Burgos JS, Ramı́rez G, Souza DO (2001) Effect of orally administered guanosine on seizures and death induced by glutamatergic agents. Brain Res 912(2):176–180. https://doi.org/10.1016/S0006-8993(01)02734-2

    Article  CAS  PubMed  Google Scholar 

  67. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protoc 8(12):2531–2537. https://doi.org/10.1038/nprot.2013.155

    Article  CAS  PubMed  Google Scholar 

  68. Muller AP, Gnoatto J, Moreira JD, Zimmer ER, Haas CB, Lulhier F, Perry ML, Souza DO et al (2011) Exercise increases insulin signaling in the hippocampus: physiological effects and pharmacological impact of intracerebroventricular insulin administration in mice. Hippocampus 21(10):1082–1092. https://doi.org/10.1002/hipo.20822

    Article  CAS  PubMed  Google Scholar 

  69. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

    Article  CAS  PubMed  Google Scholar 

  70. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 302(2–3):141–145. https://doi.org/10.1016/s0304-3940(01)01636-6

    Article  CAS  PubMed  Google Scholar 

  71. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    CAS  PubMed  Google Scholar 

  72. Yagi K (1998) Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 108:107–110. https://doi.org/10.1385/0-89603-472-0:107

    Article  CAS  PubMed  Google Scholar 

  73. Sims NR, Anderson MF (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 3(7):1228–1239. https://doi.org/10.1038/nprot.2008.105

    Article  CAS  PubMed  Google Scholar 

  74. Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58. https://doi.org/10.1007/978-1-61779-382-0_3

    Article  CAS  PubMed  Google Scholar 

  75. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312. https://doi.org/10.1042/BJ20110162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Makrecka-Kuka M, Krumschnabel G, Gnaiger E (2015) High-resolution respirometry for simultaneous measurement of oxygen and hydrogen peroxide fluxes in permeabilized cells, tissue homogenate and isolated mitochondria. Biomolecules 5(3):1319–1338. https://doi.org/10.3390/biom5031319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  78. Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278(21):19062–19070. https://doi.org/10.1074/jbc.M212661200

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CPNq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Instituto Nacional de Ciência e Tecnologia-Excitotoxicidade e Neuroproteção (INCT-EN), Universidade Federal do Rio Grande do Sul (UFRGS), and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.S.S. and D.O.S.; methodology, J.S.S., D.O.S., A.U.A., and A.G; investigation, J.S.S., Y.N., F.R., P.C.L.F., F.U.F., A.S.R, A.W.B., T.M.L., R.V.A., and B.S.; writing (original draft), J.S.S. and D.O.S.; writing (review and editing), J.S.S., D.O.S., Y.N., A.U.A, and A.G.; funding acquisition, D.O.S.; resources, J.S.S. and D.O.S.; and supervision, D.O.S.

Corresponding author

Correspondence to Diogo O. Souza.

Ethics declarations

All animal experiments were performed under the principles of the laboratory of animal care from the National Research Institute and approved by the Federal University of Rio Grande do Sul (UFRGS) Animal Care and Use Committee (CEUA/UFRGS no. 30169).

Conflict of Interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.S., Nonose, Y., Rohden, F. et al. Guanosine Neuroprotection of Presynaptic Mitochondrial Calcium Homeostasis in a Mouse Study with Amyloid-β Oligomers. Mol Neurobiol 57, 4790–4809 (2020). https://doi.org/10.1007/s12035-020-02064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02064-4

Keywords

Navigation